Publications by authors named "Spolarics Z"

Sex-related outcome differences in trauma remain controversial. The mechanisms causing sex-biased outcomes are likely to have hormonal and genetic components, in which X-linked genetic polymorphisms may play distinct roles because of X-linked inheritance, hemizygosity in males, and X chromosome mosaicism in females. The study aimed to elucidate the contribution of biological sex and the common X-linked IRAK1 haplotype to posttrauma clinical complications, inflammatory cytokine and chemokine production, and polymorphonuclear cell and monocyte activation.

View Article and Find Full Text PDF

Random X chromosome (ChrX) inactivation and consequent cellular mosaicism for the active ChrXs in white blood cells (WBCs) is unique to females and may contribute to sex-biased modulation of the innate immune response. Polymorphic differences between the two parental ChrXs may result in ChrX skewing of circulating WBCs (ChrX inactivation-ratio (XCI) > 3) driven by differences in stem cell selection and activity in the bone marrow or WBC trafficking at the periphery. Independent of the mechanism, ChrX skewing may result in genotype-phenotype discrepancies.

View Article and Find Full Text PDF

Common X-linked genetic polymorphisms are expected to alter cellular responses affecting males and females differently through sex-linked inheritance pattern as well as X chromosome (ChrX) mosaicism and associated ChrX skewing, which is unique to females. We tested this hypothesis in ex vivo lipopolysaccharide and phorbol ester-stimulated polymorphonuclear granulocytes (PMNs) and monocytes from healthy volunteers (n = 51). Observations were analyzed after stratification by sex alone or the presence of variant IRAK1 haplotype a common X-linked polymorphism with previously demonstrated major clinical impacts.

View Article and Find Full Text PDF

Most preclinical treatments for sepsis failed in clinical trials in part because the experimental models of sepsis were performed on healthy animals that do not mimic septic patients. Here, we report that experimental diabetes worsens glycemia, inflammation, and mortality in experimental sepsis. Diabetes increases hyperglycemia, systemic inflammation, and mortality in sepsis.

View Article and Find Full Text PDF

Females have a longer lifespan and better general health than males. Considerable number of studies also demonstrated that, after trauma and sepsis, females present better outcomes as compared to males indicating sex-related differences in the innate immune response. The current notion is that differences in the immuno-modulatory effects of sex hormones are the underlying causative mechanism.

View Article and Find Full Text PDF

Sex-related outcome disparities following severe trauma have been demonstrated in human and animal studies; however, sex hormone status could not fully account for the differences. This study tested whether X-linked cellular mosaicism, which is unique to females, could represent a genetically based mechanism contributing to sex-related immuno-modulation following trauma. Serial blood samples collected for routine laboratory tests were analyzed for ChrX inactivation (XCI) ratios in white blood cells.

View Article and Find Full Text PDF

Extracellular ATP binds to and signals through P2X7 receptors (P2X7Rs) to modulate immune function in both inflammasome-dependent and -independent manners. In this study, P2X7(-/-) mice, the pharmacological agonists ATP-magnesium salt (Mg-ATP; 100 mg/kg, EC50 ≈ 1.32 mM) and benzoylbenzoyl-ATP (Bz-ATP; 10 mg/kg, EC50 ≈ 285 μM), and antagonist oxidized ATP (oxi-ATP; 40 mg/kg, IC50 ≈ 100 μM) were used to show that P2X7R activation is crucial for the control of mortality, bacterial dissemination, and inflammation in cecal ligation and puncture-induced polymicrobial sepsis in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Trauma-hemorrhagic shock increases red blood cell (RBC) adhesion to endothelial cells, contributing to microvascular dysfunction and potential tissue injury.
  • The study utilized both animal models and human blood samples to examine this phenomenon, focusing on the role of specific RBC surface adhesion molecules like CD36.
  • Gut-derived factors in intestinal lymphatics were identified as significant triggers for these RBC changes, suggesting that manipulating this pathway might mitigate complications from trauma-hemorrhagic shock.
View Article and Find Full Text PDF

ChrX cellular mosaicism for X-linked genetic polymorphisms in females versus the single ChrX representation in males denotes a genetic difference, which may contribute to gender bias in the inflammatory response. This hypothesis was tested in female F1 offspring of consomic mice (BL6J-ChrX(A/J)/NaJ) that were homokaryotic or mosaic for the active BL6 and AJ ChrXs or for IRAK1 deficiency linked to the BL6 ChrX. Sepsis was initiated by CLP.

View Article and Find Full Text PDF

Interleukin-1 receptor-associated kinase (IRAK1) is a key regulatory protein in TLR/IL1R-mediated cell activation during inflammatory response. Studies indicated that pending on the nature of the used inflammatory model, downregulation of IRAK1 may be beneficial or detrimental. However, the role of IRAK1 in affecting outcome in polymicrobial sepsis is unknown.

View Article and Find Full Text PDF

The extracellular concentrations of adenosine are increased during sepsis, and adenosine receptors regulate the host's response to sepsis. In this study, we investigated the role of the adenosine-generating ectoenzyme, ecto-5'-nucleotidase (CD73), in regulating immune and organ function during sepsis. Polymicrobial sepsis was induced by subjecting CD73 knockout (KO) and wild type (WT) mice to cecal ligation and puncture.

View Article and Find Full Text PDF

Cellular X-chromosome mosaicism, which is unique to females, may be advantageous during pathophysiological challenges compared with the single X-chromosome machinery of males, and it may contribute to gender dimorphism in the inflammatory response. We tested the hypothesis of whether cellular mosaicism for the X-linked gp91phox (NOX2) deficiency, the catalytic component of the superoxide anion-generating NADPH oxidase complex, is advantageous during polymicrobial sepsis. Deficient, wild-type (WT), and heterozygous/mosaic mice were compared following polymicrobial sepsis initiated by cecal ligation and puncture.

View Article and Find Full Text PDF

Objective: To test the hypothesis that gut-derived factors carried in trauma-hemorrhagic shock (T/HS) lymph are sufficient to induce red blood cells (RBC) injury, to investigate their potential mechanisms of action, and to define the time post-T/HS that these factors appear in the lymph.

Methods: Mesenteric lymph collected from T/HS or trauma-sham shock (T/SS) rats over different time periods was injected intravenously into male rats at a rate of 1 mL/h for 3 hours. RBC deformability was measured using laser-assisted ektacytometer to calculate the elongation index.

View Article and Find Full Text PDF

Objective: To test the hypothesis, using an animal model, whether female X-chromosome mosaicism for inflammatory gene expression could contribute to the gender dimorphic response during the host response. X-chromosome-linked genetic polymorphisms present a unique biological condition because females display heterozygous cellular mosaicism, due to the fact that either the maternal or the paternal X chromosomes are inactivated in each individual cell in females. This is in contrast with the conditions in males who carry exclusively the maternal X chromosome.

View Article and Find Full Text PDF

Despite intensive research, efforts to reduce the mortality of septic patients have failed. Adenosine is a potent extracellular signaling molecule, and its levels are elevated in sepsis. Adenosine signals through G-protein-coupled receptors and can regulate the host's response to sepsis.

View Article and Find Full Text PDF

Background: Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis.

View Article and Find Full Text PDF

Objective: To test the hypothesis that trauma-hemorrhagic shock (T/HS)-induced changes in red blood cells (RBC) contribute to the reduction of blood flow in distant organs.

Design: Laboratory study.

Setting: Academic medical center laboratory.

View Article and Find Full Text PDF

Adenosine is an immunosuppressive nucleoside, and adenosine A(2A) receptors inhibit T-cell activation. We investigated the role of A(2A) receptors in regulating T helper (Th)1- and Th2-cell development and effector function. A(2A)-receptor stimulation suppressed the development of T-cell receptor (TCR) -stimulated naive T cells into both Th1 and Th2 cells, as indicated by decreased IFN-gamma production by cells developed under Th1-skewing conditions and decreased interleukin (IL) -4, IL-5, and IL-10 production by cells developed under Th2-skewing conditions.

View Article and Find Full Text PDF

Bone marrow (BM) dysfunction is an important component of immunomodulation. This study investigated alterations in cell content, apoptotic responses, and cell proliferation in BM, blood, and spleen in endotoxemic mice (LPS from Escherichia coli). As the decreased antioxidant status associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency has been shown to modulate the innate immune response, we also tested whether a G6PD mutation (80% decrease in cellular enzyme activity) alters BM responses during endotoxemia.

View Article and Find Full Text PDF

Ca2+ signaling plays an important role in endothelial cell (EC) functions including the regulation of barrier integrity. Recently, the endogenous lipid derivative, sphingosine-1-phosphate (S1P), has emerged as an important modulator of EC barrier function. We investigated the role of endogenously generated S1P in Ca2+ metabolism and barrier function in human umbilical endothelial cells (HUVECs) stimulated by thrombin, histamine, or other agonists.

View Article and Find Full Text PDF

Females as compared with males display better general health status, longevity, and improved clinical course after injury and infection. It is generally believed that the female advantage is associated with the effects of sex hormones. This review argues that the sex benefit of females during the host response is associated with polymorphism of X-linked genes and cellular mosaicism for X-linked parental alleles.

View Article and Find Full Text PDF

Infection-induced RBC dysfunction has been shown to play a role in the modulation of host response to injury and infection. The underlying biochemical mechanisms are not known. This study investigated alterations in RBC band-3 phosphorylation status and its relationship to anion exchange activity in vitro as well as under in vivo septic conditions induced by cecal ligation and puncture (CLP) in mice.

View Article and Find Full Text PDF

Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human genetic polymorphism. The deficiency protects against malaria but was shown to worsen the clinical course after severe trauma. This study tested whether the deficiency is associated with altered cytokine responses in vitro and in vivo and affects survival after endotoxemia or polymicrobial sepsis (cecal ligation and puncture).

View Article and Find Full Text PDF