Publications by authors named "Spolaore M"

SPIDER is the 100 keV full-size Negative Ion Source prototype of the ITER Neutral Beam Injector, operating at Consorzio RFX in Padova, Italy. The largest Negative Ion Source in the world, SPIDER generates an RF driven plasma from which Deuterium or Hydrogen negative ions are produced and extracted. At the end of 2021, a scheduled long-term shutdown started to introduce major modifications and improvements aiming to solve issues and drawbacks identified during the first three years of SPIDER operations.

View Article and Find Full Text PDF

Giant negative ion sources for neutral beam injectors deliver huge negative ion currents, thanks to their multi-beamlet configuration. As the single-beamlet optics defines the transmission losses along the beamline, the extraction of a similar current for all beamlets is extremely desirable, in order to facilitate the beam source operation (i.e.

View Article and Find Full Text PDF

The requirements of ITER neutral beam injectors (1 MeV, 40 A negative deuterium ion current for 1 h) have never been simultaneously attained; therefore, a dedicated Neutral Beam Test Facility (NBTF) was set up at Consorzio RFX (Padova, Italy). The NBTF includes two experiments: SPIDER (Source for the Production of Ions of Deuterium Extracted from Rf plasma), the full-scale prototype of the source of ITER injectors, with a 100 keV accelerator, to investigate and optimize the properties of the ion source; and MITICA, the full-scale prototype of the entire injector, devoted to the issues related to the accelerator, including voltage holding at low gas pressure. The present paper gives an account of the status of the procurements, of the timeline, and of the voltage holding tests and experiments for MITICA.

View Article and Find Full Text PDF

This paper describes a new filamentary probe recently introduced on the COMPASS tokamak. It allows the measurement of electrostatic and magnetic properties of the filaments and their changes in dependence on distance from the separatrix in the region between a divertor and midplane. The probe head is mounted on a manipulator moving the probe radially on a shot-to-shot basis.

View Article and Find Full Text PDF

Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions.

View Article and Find Full Text PDF

Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter.

View Article and Find Full Text PDF

A prototype system of the Langmuir probes for SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) was manufactured and experimentally qualified. The diagnostic was operated in RF (Radio Frequency) plasmas with cesium evaporation on the BATMAN (BAvarian Test MAchine for Negative ions) test facility, which can provide plasma conditions as expected in the SPIDER source. A RF passive compensation circuit was realised to operate the Langmuir probes in RF plasmas.

View Article and Find Full Text PDF

A system of electrostatic sensors has been designed for the SPIDER (Source for the production of Ions of Deuterium Extracted from RF plasma) experiment, prototype RF source of the ITER NBI (neutral beam injection). A prototype of the sensor system was manufactured and tested at the BATMAN (BAvarian Test MAchine for Negative ions) facility, where the plasma environment is similar to that of SPIDER. Different aspects concerning the mechanical manufacturing and the signal conditioning are presented, among them the RF compensation adopted to reduce the RF effects which could lead to overestimated values of the electron temperature.

View Article and Find Full Text PDF

Experimental evidences of short wavelength electromagnetic modes are found in the reversed-field-pinch configuration device RFX-mod by means of in-vessel magnetic probes. The modes are revealed during the helical states of the plasma. Their amplitude is well correlated to the electron temperature gradient strength in the core.

View Article and Find Full Text PDF

The ITER heating neutral beam (HNB) injector, based on negative ions accelerated at 1 MV, will be tested and optimized in the SPIDER source and MITICA full injector prototypes, using a set of diagnostics not available on the ITER HNB. The RF source, where the H(-)∕D(-) production is enhanced by cesium evaporation, will be monitored with thermocouples, electrostatic probes, optical emission spectroscopy, cavity ring down, and laser absorption spectroscopy. The beam is analyzed by cooling water calorimetry, a short pulse instrumented calorimeter, beam emission spectroscopy, visible tomography, and neutron imaging.

View Article and Find Full Text PDF

In simple magnetized toroidal plasmas, field-aligned blobs originate from ideal interchange waves and propagate radially outward under the effect of ∇B and curvature induced E×B drifts. We report on the first experimental two-dimensional measurements of the field-aligned current associated with blobs, whose ends terminate on a conducting limiter. A dipolar structure of the current density is measured, which originates from ∇B and curvature induced polarization of the blob and is consistent with sheath boundary conditions.

View Article and Find Full Text PDF

Turbulent structures detected in the edge plasma of fusion devices, often described as blobs, are generally believed to be responsible for confinement degradation. Recent experimental evidence and theories have suggested their filamentary electromagnetic nature. In this Letter the first direct experimental measurements of the parallel current density associated with turbulent structures in a fusion experiment are reported.

View Article and Find Full Text PDF

The neutral beam injectors for ITER are designed to deliver hydrogen or deuterium atoms accelerated at 1 MV for a total power of 34 MW. Design of the neutral beam and of the ion source test facilities is presently ongoing. Among the various activities, also the definition and assessment of necessary diagnostics are being carried out.

View Article and Find Full Text PDF

Stable operation with control on magnetohydrodynamic modes has been obtained in the modified reversed field experiment employing a set of 192 feedback controlled saddle coils. Improvements of plasma temperature, confinement (twofold), and pulse length (threefold) and, as a consequence of the magnetic fluctuation reduction, strong mitigation of plasma-wall interaction and mode locking are reported.

View Article and Find Full Text PDF

The momentum balance has been applied to the ExB flow in the edge region of a reversed field pinch (RFP) configuration. All terms, including those involving fluctuations, have been measured in stationary condition in the edge region of the Extrap-T2R RFP experiment. It is found that the component of the Reynolds stress driven by electrostatic fluctuations is the term playing the major role in driving the shear of the ExB flow to a value marginal for turbulent suppression, so that the results are in favor of a turbulence self-regulating mechanism underlying the momentum balance at the edge.

View Article and Find Full Text PDF

Coherent structures identified in two reversed field pinch experiments are interpreted as a dynamic balance of dipolar and monopolar vortices growing and evolving under the effect of the ExB flow shear. For the first time their contribution to the anomalous transport has been estimated in fusion related plasmas, showing that they can account for up to 50% of the total plasma diffusivity. The experimental findings indicate that the diffusion coefficient associated with the coherent structures depends on the relative population of the two types of vortices and is minimum when the two populations are equal.

View Article and Find Full Text PDF

A statistical analysis of the anomalous particle flux in the edge region of the RFX experiment has revealed that laminar times between bursts, which account for more than 50% of the losses, have a power law distribution and that flux fluctuations are not self-similar. These properties are found in contrast with a wide class of self-organized-criticality models so that it is concluded that there is no experimental evidence of avalanchelike process occurrence in the plasma of RFX.

View Article and Find Full Text PDF

In order to test the self-organized criticality (SOC) paradigm in transport processes, a novel technique has been applied for the first time to plasmas confined in reversed field pinch configuration. This technique consists of an analysis of the probability distribution function of the times between bursts in density fluctuations measured by microwave reflectometry and electrostatic probes. The same analysis has also been applied to intermittent events sorted out from the Gaussian background.

View Article and Find Full Text PDF