Pancreatic cancer is characterized by a desmoplastic reaction that creates a dense fibroinflammatory microenvironment, promoting hypoxia and limiting cancer drug delivery due to decreased blood perfusion. Here, we describe a novel tumor-stroma interaction that may help explain the prevalence of desmoplasia in this cancer. Specifically, we found that activation of hypoxia-inducible factor-1α (HIF-1α) by tumor hypoxia strongly activates secretion of the sonic hedgehog (SHH) ligand by cancer cells, which in turn causes stromal fibroblasts to increase fibrous tissue deposition.
View Article and Find Full Text PDFMost solid tumors develop regions of hypoxia as they grow and outstrip their blood supply. In order to survive in the stressful hypoxic environment, tumor cells have developed a coordinated set of responses orchestrating their adaptation to hypoxia. The outcomes of the cellular responses to hypoxia are aggressive disease, resistance to therapy, and decreased patient survival.
View Article and Find Full Text PDFClin Cancer Res
October 2009
The hypoxia-inducible transcription factor (HIF)-1alpha inhibitor KC7F2 described in this issue of Clinical Cancer Research is the newest addition to an emerging class of antitumor agents targeting the hypoxia response. Here, we discuss the proposed mechanism of action of KC7F2 and its potential strengths and limitations in comparison with other promising HIF-1alpha inhibitors.
View Article and Find Full Text PDFThe hypoxia-inducible factor-1 (HIF-1) is the master regulator of the cellular response to hypoxia and its expression levels are tightly controlled through synthesis and degradation. It is widely accepted that HIF-1alpha protein accumulation during hypoxia results from inhibition of its oxygen-dependent degradation by the von Hippel Lindau protein (pVHL) pathway. However, recent data describe new pVHL- or oxygen-independent mechanisms for HIF-1alpha degradation.
View Article and Find Full Text PDFWe have reported previously that PX-478 (S-2-amino-3-[4'-N,N,-bis(chloroethyl)amino]phenyl propionic acid N-oxide dihydrochloride) has potent antitumor activity against a variety of human tumor xenografts associated with the levels of the hypoxia-inducible factor-1alpha (HIF-1alpha) within the tumor. We now report that PX-478 inhibits HIF-1alpha protein levels and transactivation in a variety of cancer cell lines. Hypoxia-induced vascular endothelial growth factor formation was inhibited by PX-478, whereas baseline levels of vascular endothelial growth factor in normoxia were unaffected.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2006
Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2006
Receptor expressed in lymphoid tissues (RELT) is a new member of the TNFR family with little known regarding its signaling. Typically, TNFRs engage TRAFs for activation of NF-kappaB and MAPK cascades. We found that RELT does not use the standard signaling pathways characteristic of other TNFRs.
View Article and Find Full Text PDFTumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor family that is implicated in apoptosis, proliferation, migration, and inflammation. We describe our findings showing that TWEAK mediated the differentiation of RAW264.7 (RAW) monocyte/macrophage cells into multinuclear, functional osteoclasts.
View Article and Find Full Text PDFEur Cytokine Netw
September 2003
DAP-kinase is a calcium/calmodulin (Ca2+/CaM) serine/threonine kinase which positively mediates programmed cell death in a variety of cell systems. The kinase is localized to the actin microfilament and has a unique, multidomain structure consisting of ankyrin repeats and a death domain. One of the substrates of DAP-kinase was identified as myosin light chain (MLC), the phosphorylation of which mediates membrane blebbing.
View Article and Find Full Text PDFEukaryotic initiation factor 4E (eIF4E) binds the 5'-cap of eukaryotic mRNAs and overexpression of eIF4E in epithelial cell cancers correlates with the metastases/tissue invasion phenotype. Photolabeling of eIF4E with [gamma-32P]8-azidoguanosine 5'-triphosphate (8-N3GTP) demonstrated cross-linking at Lys-119 in the S4-H2 loop which is distant from the m7GTP binding site [Marcotrigiano et al. (1997) Cell 89, 951-961; Friedland et al.
View Article and Find Full Text PDFDeath-associated protein kinase is a calcium/calmodulin serine/threonine kinase, which positively mediates programmed cell death in a variety of systems. Here we addressed its mode of regulation and identified a mechanism that restrains its apoptotic function in growing cells and enables its activation during cell death. It involves autophosphorylation of Ser(308) within the calmodulin (CaM)-regulatory domain, which occurs at basal state, in the absence of Ca(2+)/CaM, and is inversely correlated with substrate phosphorylation.
View Article and Find Full Text PDFActivation of the Ras/MAPK signaling cascade is essential for growth factor-induced cell proliferation and differentiation. In this report, we describe the purification, cloning, and characterization of a novel protein, designated FRS2, that is tyrosine phosphorylated and binds to Grb2/Sos in response to FGF or NGF stimulation. We find that FRS2 is myristylated and that this modification is essential for membrane localization, tyrosine phosphorylation, Grb2/Sos recruitment, and MAPK activation.
View Article and Find Full Text PDFProtein-mRNA cap interactions represent a critical point for regulating gene expression in vivo. For example, a rapid stimulation of gene expression at the mRNA level is mediated by insulin regulating the availability of functional cap-binding protein (eIF-4E). In addition, several viruses modify cap binding proteins to regulate host vs viral gene expression.
View Article and Find Full Text PDFHeparin is required for fibroblast growth factor (FGF) stimulation of biological responses. Using isothermal titration calorimetry, we show that acidic FGF (aFGF) forms a 1:1 complex with the soluble extracellular domain of FGF receptor (FGFR). Heparin exerts its effect by binding to many molecules of aFGF.
View Article and Find Full Text PDFFibroblast growth factors (FGF) stimulate growth arrest and differentiation in rat pheochromocytoma PC12 cells. We examined the role of phosphatidylinositol (PI) hydrolysis in FGF-induced differentiation of PC12 cells by exploring the biological and biochemical activity of a mutant FGF receptor 1 (flg) defective in stimulation of PI hydrolysis. We show that point mutation at Tyr-766 (Y766F) of the FGF receptor prevents tyrosine phosphorylation of phospholipase C gamma and eliminates acidic FGF (aFGF)-induced stimulation of PI hydrolysis in PC12 cells.
View Article and Find Full Text PDFLigand-induced dimerization of growth factor receptors is crucial for stimulation of their intrinsic protein tyrosine kinase activity promoting receptor autophosphorylation by an intermolecular mechanism. Moreover, the suppressive and negative dominant action of defective epidermal growth factor receptor (EGFR) was shown to be caused by formation of inactive heterodimers with normal EGFR leading to diminished biological signaling. In this report we explore the structural requirements and functional significance of heterodimerization between EGFR and HER2.
View Article and Find Full Text PDF