Background And Aims: HBV infection is restricted to the liver, where it drives exhaustion of virus-specific T and B cells and pathogenesis through dysregulation of intrahepatic immunity. Our understanding of liver-specific events related to viral control and liver damage has relied almost solely on animal models, and we lack useable peripheral biomarkers to quantify intrahepatic immune activation beyond cytokine measurement. Our objective was to overcome the practical obstacles of liver sampling using fine-needle aspiration and develop an optimized workflow to comprehensively compare the blood and liver compartments within patients with chronic hepatitis B using single-cell RNA sequencing.
View Article and Find Full Text PDF(previously known as ) is frequently found on lipid-rich parts of the human skin. While is most known for its role in the development and progression of the skin disease acne, it is also involved in many other types of infections, often involving implanted medical devices. readily forms biofilms and there is growing evidence that biofilm formation by this Gram-positive, facultative anaerobic micro-organism plays an important role and is also involved in treatment failure.
View Article and Find Full Text PDFSome subgroups dominate on healthy skin, whereas others are frequently acne associated. Here we provide mechanistic insights into this difference, using an anaerobic keratinocyte-sebocyte- co-culture model. An acneic strain as well as its porphyrins activates NRLP3 inflammasome assembly, whereas this was not observed with a non-acneic strain.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
Acne vulgaris is one of the most common skin disorders and affects the pilosebaceous units. Although the exact pathogenesis of acne is still unknown, (formerly known as ) is considered one of the key contributing factors. In fact, a significant association exists between strains belonging to phylotype I and acne.
View Article and Find Full Text PDFBackground: Major Depressive Disorder (MDD) covers a wide spectrum of symptoms, including cognitive dysfunction, which can persist during remission. Both inflammatory states and psychosocial stress play a role in MDD pathogenesis.
Methods: The effects of inflammatory (i.
Aims: The aim of this study was to evaluate the drug-drug interaction between pimodivir, a novel, non-nucleoside polymerase basic protein 2 (PB2) subunit inhibitor of the influenza A virus polymerase complex, and oseltamivir, to assess the feasibility of this combination therapy. Furthermore, single- and multiple-dose pharmacokinetics and safety of pimodivir in healthy volunteers were assessed.
Methods: In Part 1 of this open-label Phase 1 study, healthy volunteers (n = 18) were randomized to one of six cross-over treatment sequences, each comprising administration of oseltamivir 75 mg or pimodivir 600 mg or combination thereof twice daily on Days 1-4, followed by a single morning dose on Day 5.
Aim: The aim of the present study was to develop a new model system to study Propionibacterium acnes biofilms. This model should be representative for the conditions encountered in the pilosebaceous unit.
Methods And Results: The new model, consists of an artificial sebum pellet supported by a silicone disc.
Background: A previous study investigating coadministration of etravirine, a nonnucleoside reverse transcriptase inhibitor, and lopinavir/ritonavir soft-gel formulation resulted in nonclinically relevant changes in etravirine and lopinavir exposure. The current study evaluated the pharmacokinetic interaction between etravirine and the lopinavir/ritonavir melt extrusion formulation.
Method: Sixteen human immunodeficiency virus (HIV)-negative volunteers were randomized to either treatment sequence A/B or B/A, with 14 days- washout between treatments (treatment A: etravirine 200 mg bid for 8 days; treatment B: lopinavir/ritonavir 400/100 mg bid for 16 days with etravirine 200 mg bid on days 9-16).
Deposition of the amyloid-beta peptide is a pathological hallmark of Alzheimer's disease. A high-throughput functional genomics screen identified G protein-coupled receptor 3 (GPR3), a constitutively active orphan G protein-coupled receptor, as a modulator of amyloid-beta production. Overexpression of GPR3 stimulated amyloid-beta production, whereas genetic ablation of GPR3 prevented accumulation of the amyloid-beta peptide in vitro and in an Alzheimer's disease mouse model.
View Article and Find Full Text PDFWe investigated whether peroxisome proliferator-activated receptor gamma (PPARgamma) could be involved in the modulation of the amyloid cascade causing Alzheimer's disease. Inducing expression or activating PPARgamma using synthetic agonists of the thiazolinedione family results in a dramatic decrease in the levels of the amyloid-beta (Abeta) peptide in the conditioned medium of neuronal and non-neuronal cells. PPARgamma does not affect expression or activity of any of the secretases involved in the generation of the Abeta peptide but induces a fast, cell-bound clearing mechanism responsible for the removal of the Abeta peptide from the medium.
View Article and Find Full Text PDFPresenilin 1 (PS1) interacts with telencephalin (TLN) and the amyloid precursor protein via their transmembrane domain (Annaert, W.G., C.
View Article and Find Full Text PDFThe Presenilins are part of the gamma-secretase complex that is involved in the regulated intramembrane proteolysis of amyloid precursor protein and other type I integral membrane proteins. Nicastrin, Pen-2, and Aph1 are the other proteins of this complex. The Presenilins probably contribute the catalytic activity to the protease complex.
View Article and Find Full Text PDFGlycogen synthase kinase-3beta (GSK-3beta) is important in neurogenesis. Here we demonstrate that the kinase influenced post-natal maturation and differentiation of neurons in vivo in transgenic mice that overexpress a constitutively active GSK-3beta[S9A]. Magnetic resonance imaging revealed a reduced volume of the entire brain, concordant with a nearly 20% reduction in wet brain weight.
View Article and Find Full Text PDFIn the brain of Alzheimer's disease (AD) patients, neurotoxic amyloid peptides accumulate and are deposited as senile plaques. A major therapeutic strategy aims to decrease production of amyloid peptides by inhibition of gamma-secretase. Presenilins are polytopic transmembrane proteins that are essential for gamma-secretase activity during development and in amyloid production.
View Article and Find Full Text PDFCoexpression of constitutively active GSK-3beta[S9A] rescued the axonal pathology induced by overexpression of human tau in transgenic mice (Spittaels et al., (2000) J. Biol.
View Article and Find Full Text PDFOne of the landmarks of Alzheimer's disease are neurofibrillary tangles (NFT) in the brain. NFT mainly consist of a hyperphosphorylated form of the protein tau, which is responsible for stabilisation of the neuronal cytoskeleton by microtubule binding and is unable to function properly in its hyperphosphorylated form. Glycogen synthase kinase-3beta (GSK3beta) is able to phosphorylate tau in a cellular context which could play a role in the formation of these NFT.
View Article and Find Full Text PDFWe have reported transgenic mice with neuronal overexpression of the clinical mutant beta-amyloid precursor protein (APP) known as London, which develop an AD-related phenotype [Moechers, Dewachter, Lorent, Reversé, Baekelandt, Nadiu, Tesseur, Spittaels, Van den Haute, Checler, et al. (1999) J. Biol.
View Article and Find Full Text PDFThe potential contribution of cyclin-dependent protein kinase 5 (cdk5) to hyperphosphorylate protein tau, as claimed in Alzheimer's disease, was investigated in vivo. We generated single, double, and triple transgenic mice that coexpress human cdk5 and its activator p35 as well as human protein tau in cerebral neurons. Whereas expression and increased cdk5-kinase activity was obtained, as measured in vitro and demonstrated in vivo, neither murine nor human protein tau was appreciably phosphorylated in the brain of double and triple transgenic mice.
View Article and Find Full Text PDFIn transgenic mice that overexpress mutant Amyloid Precursor Protein [V717I], or APP/London (APP/Lo) (1999a. Early phenotypic changes in transgenic mice that overexpress different mutants of Amyloid Precursor Protein in brain. J.
View Article and Find Full Text PDFDeposition of amyloid beta-peptide (Abeta) in cerebral vessel walls (cerebral amyloid angiopathy, CAA) is very frequent in Alzheimer's disease and occurs also as a sporadic disorder. Here, we describe significant CAA in addition to amyloid plaques, in aging APP/Ld transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP) exclusively in neurons. The number of amyloid-bearing vessels increased with age, from approximately 10 to >50 per coronal brain section in APP/Ld transgenic mice, aged 13 to 24 months.
View Article and Find Full Text PDFProtein tau filaments in brain of patients suffering from Alzheimer's disease, frontotemporal dementia, and other tauopathies consist of protein tau that is hyperphosphorylated. The responsible kinases operating in vivo in neurons still need to be identified. Here we demonstrate that glycogen synthase kinase-3beta (GSK-3beta) is an effective kinase for protein tau in cerebral neurons in vivo in adult GSK-3beta and GSK-3beta x human tau40 transgenic mice.
View Article and Find Full Text PDFEpidemiological studies have established that the epsilon 4 allele of the ApoE gene (ApoE4) constitutes an important risk factor for Alzheimer's disease and might influence the outcome of central nervous system injury. The mechanism by which ApoE4 contributes to the development of neurodegeneration remains unknown. To test one hypothesis or mode of action of ApoE, we generated transgenic mice that overexpressed human ApoE4 in different cell types in the brain, using four distinct gene promoter constructs.
View Article and Find Full Text PDFMutations in the human tau gene cause frontotemporal dementia and parkinsonism linked to chromosome 17. Some mutations, including mutations in intron 10, induce increased levels of the functionally normal four-repeat tau protein isoform, leading to neurodegeneration. We generated transgenic mice that overexpress the four-repeat human tau protein isoform specifically in neurons.
View Article and Find Full Text PDFTransgenic mice overexpressing different forms of amyloid precursor protein (APP), i.e. wild type or clinical mutants, displayed an essentially comparable early phenotype in terms of behavior, differential glutamatergic responses, deficits in maintenance of long term potentiation, and premature death.
View Article and Find Full Text PDF