Publications by authors named "Spiros Kostopoulos"

(1) Background: Reviewing biological material under the microscope is a demanding and time-consuming process, prone to diagnostic pitfalls. In this study, a methodology for tomographic imaging of tissue sections is presented, relying on the idea that each tissue sample has a finite thickness and, therefore, it is possible to create images at different levels within the sample, revealing details that would probably not be seen otherwise. (2) Methods: Optical slicing was possible by developing a custom-made microscopy stage controlled by an ARDUINO.

View Article and Find Full Text PDF

Accurate diagnosis and timely intervention are key to addressing common knee conditions effectively. In this work, we aim to identify textural changes in knee lesions based on bone marrow edema (BME), injury (INJ), and osteoarthritis (OST). One hundred and twenty-one MRI knee examinations were selected.

View Article and Find Full Text PDF

Objective: EPI DWI is a routinely used sequence in brain imaging but it has limitations when it comes to SNR and artifact reduction. PROPELLER DWI has the benefit of improving image quality compared to EPI DWI. The aim of this study is to compare the EPI DWI sequence in brain MR imaging with the PROPELLER DWI sequence.

View Article and Find Full Text PDF

In this study, we have evaluated the real-world conditions, the job outlook and the job satisfaction in the Biomedical Engineering (BME) sector in Greece on the basis of the experience of about 12% of the graduates of the BME Department of the University of West Attica, Greece. An anonymous online questionnaire, implemented on the Microsoft Forms platform using multiple choice questions, short text answers and Likert-based scales, became publicly available to the graduates of the BME department. About 12% of the department's graduates responded to the survey.

View Article and Find Full Text PDF

The purpose of the study is to develop and automate a series of steps for enabling digital 3D tissue volume generation in conventional Brightfield microscopy for histopathology applications. Tissue samples were retrieved from the General Hospital of Athens "Hippocration", Greece. Samples were placed on a microtome that produced consecutive 2 μm sections.

View Article and Find Full Text PDF

In the current work, a pix2pix conditional generative adversarial network has been evaluated as a potential solution for generating adequately accurate synthesized morphological X-ray images by translating standard photographic images of mice. Such an approach will benefit 2D functional molecular imaging techniques, such as planar radioisotope and/or fluorescence/bioluminescence imaging, by providing high-resolution information for anatomical mapping, but not for diagnosis, using conventional photographic sensors. Planar functional imaging offers an efficient alternative to biodistribution ex vivo studies and/or 3D high-end molecular imaging systems since it can be effectively used to track new tracers and study the accumulation from zero point in time post-injection.

View Article and Find Full Text PDF

Our purpose was to employ microscopy images of amplified in breast cancer 1 (AIB1)-stained biopsy material of patients with colorectal cancer (CRC) to: (a) find statistically significant differences (SSDs) in the texture and color of the epithelial gland tissue, between 5-year survivors and non-survivors after the first diagnosis and (b) employ machine learning (ML) methods for predicting the CRC-patient 5-year survival. We collected biopsy material from 54 patients with diagnosed CRC from the archives of the University Hospital of Patras, Greece. Twenty-six of the patients had survived 5 years after the first diagnosis.

View Article and Find Full Text PDF

Objectives: The objective of this study was (a) to identify, by computer processing of digitized images of hematoxylin and eosin (H&E)-stained biopsy material of the cervix, differences in the structure of nuclei between high-risk (HR) and low-risk (LR) human papillomavirus virus (HPV) types and (b) to assess the HPV risk type by designing a decision-support system (DSS).

Materials And Methods: Clinical material comprised H&E-stained biopsies from squamous intraepithelial lesions of 55 patients with polymerase chain reaction-verified HR-HPV (26 patients) or LR-HPV (29 patients) infection. From each patient's biopsy specimen, we digitized 1 region of interest, guided by the expert physician.

View Article and Find Full Text PDF

The aim of the present study was to design an adaptable pattern recognition (PR) system to discriminate low- from high-grade squamous intraepithelial lesions (LSIL and HSIL, respectively) of the cervix using microscopy images of hematoxylin and eosin (H&E)-stained biopsy material from two different medical centers. Clinical material comprised H&E-stained biopsies of 66 patients diagnosed with LSIL (34 cases) or HSIL (32 cases). Regions of interest were selected from each patient's digitized microscopy images.

View Article and Find Full Text PDF

Objective: The objective of this study was to study the textural and color changes occurring in the epithelial gland tissue with advancing colorectal cancer (CRC), utilizing immunohistochemical stain for AIB1 expression biopsy material.

Material And Methods: Clinical material comprised biopsy specimens of 67 patients with a diagnosis of CRC. Two experienced pathologists used H&E-stained material for grading CRC lesions and immunohistochemical (IHC) stain for AIB1 expression.

View Article and Find Full Text PDF

Background: Cervical dysplasia is a precancerous condition, and if left untreated, it may lead to cervical cancer, which is the second most common cancer in women. The purpose of this study was to investigate differences in nuclear properties of the H&E-stained biopsy material between low CIN and high CIN cases and associate those properties with the CIN grade.

Methods: The clinical material comprised hematoxylin and eosin- (H&E-) stained biopsy specimens from lesions of 44 patients diagnosed with cervical intraepithelial neoplasia (CIN).

View Article and Find Full Text PDF

Background And Objective: In this study a texture simulation methodology is proposed for composing synthetic tissue microscopy images that could serve as a quantitative gold standard for the evaluation of the reliability, accuracy and performance of segmentation algorithms in computer-aided diagnosis.

Methods: A library of background and nuclei regions was generated using pre-segmented Haematoxylin and Eosin images of brain tumours. Background image samples were used as input to an image quilting algorithm that produced the synthetic background image.

View Article and Find Full Text PDF

Objective: The aim of this study was to propose features that evaluate pictorial differences between melanocytic nevus (mole) and melanoma lesions by computer-based analysis of plain photography images and to design a cross-platform, tunable, decision support system to discriminate with high accuracy moles from melanomas in different publicly available image databases.

Material And Methods: Digital plain photography images of verified mole and melanoma lesions were downloaded from (i) Edinburgh University Hospital, UK, (Dermofit, 330moles/70 melanomas, under signed agreement), from 5 different centers (Multicenter, 63moles/25 melanomas, publicly available), and from the Groningen University, Netherlands (Groningen, 100moles/70 melanomas, publicly available). Images were processed for outlining the lesion-border and isolating the lesion from the surrounding background.

View Article and Find Full Text PDF

Histopathology image processing, analysis and computer-aided diagnosis have been shown as effective assisting tools towards reliable and intra-/inter-observer invariant decisions in traditional pathology. Especially for cancer patients, decisions need to be as accurate as possible in order to increase the probability of optimal treatment planning. In this study, we propose a new image collection library (HICL-Histology Image Collection Library) comprising 3831 histological images of three different diseases, for fostering research in histopathology image processing, analysis and computer-aided diagnosis.

View Article and Find Full Text PDF

Introduction: Although T1 weighted spin echo (T1W SE) images are widely used to study anatomical details and pathologic abnormalities of the brain, its role in delineation of lesions and reduction of artifacts has not been thoroughly investigated. BLADE is a fairly new technique that has been reported to reduce motion artifacts and improve image quality.

Objective: The primary objective of this study is to compare the quality of T1-weighted fluid attenuated inversion recovery (FLAIR) images with BLADE technique (T1W FLAIR BLADE) and the quality of T1W SE images in the MR imaging of the brain.

View Article and Find Full Text PDF

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) with gadolinium constitutes one of the most promising protocols for boosting up the sensitivity in breast cancer detection. The aim of this study was twofold: first to design an image processing methodology to estimate the vascularity of the breast region in DCE-MRI images and second to investigate whether the differences in the composition/texture and vascularity of normal, benign and malignant breasts may serve as potential indicators regarding the presence of the disease. Clinical material comprised thirty nine cases examined on a 3.

View Article and Find Full Text PDF

The aim of the present study was to design a microscopy image analysis (MIA) system for predicting the 5-year survival of patients with laryngeal squamous cell carcinoma, employing histopathology images of lesions, which had been immunohistochemically (IHC) stained for p63 expression. Biopsy materials from 42 patients, with verified laryngeal cancer and follow-up, were selected from the archives of the University Hospital of Patras, Greece. Twenty six patients had survived more than 5 years and 16 less than 5 years after the first diagnosis.

View Article and Find Full Text PDF

Purpose: To assess the efficacy of the BLADE technique (MR imaging with 'rotating blade-like k-space covering') to significantly reduce motion, truncation, flow and other artifacts in cervical spine compared to the conventional technique.

Materials And Methods: In eighty consecutive subjects, who had been routinely scanned for cervical spine examination, the following pairs of sequences were compared: a) T2 TSE SAG vs. T2 TSE SAG BLADE and b) T2 TIRM SAG vs.

View Article and Find Full Text PDF

Background: P63 immunostaining has been considered as potential prognostic factor in laryngeal cancer. Considering that P63 is mainly nuclear stain, a possible correlation between the texture of P63-stained nuclei and the tumor's grade could be of value to diagnosis, since this may be related to biologic information imprinted as texture on P63 expressed nuclei.

Objective: To investigate the association between P63 stained nuclei and histologic grade in laryngeal tumor lesions.

View Article and Find Full Text PDF

Objective: To design a pattern recognition (PR) system for discriminating between low- and high-grade laryngeal cancer cases, employing immunohistochemically stained, for p63 expression, histopathology images.

Study Design: The PR system was designed to assist in the physician's diagnosis for improving patient survival. The material comprised 55 verified cases of laryngeal cancer, 21 of low-grade and 34 of high-grade malignancy.

View Article and Find Full Text PDF

The purpose of this study, is to compare the sequences: 1) proton density (PD) BLADE (BLADE is a PROPELLER-equivalent implementation of the Siemens Medical System) with fat saturation (FS) coronal (COR), 2) PD FS COR, 3) multi-planar reconstruction (MPR) with 3mm slice thickness and 4) multi-planar reconstruction (MPR) with 1.5mm slice thickness, both from the T2 3D-double-echo steady state (DESS) with water excitation (WE) sagittal (SAG), regarding their abilities to identify changes in the femorotibial condyle cartilage in knee MRI examinations. Thirty three consecutive patients with osteoarthritis (18 females, 15 males; mean age 56years, range 37-71years), who had been routinely scanned for knee examination using the previously mentioned image acquisition techniques, participated in the study.

View Article and Find Full Text PDF

The purpose of this study is to evaluate the ability of T2 turbo spin echo (TSE) axial and sagittal BLADE sequences in reducing or even eliminating motion, pulsatile flow and cross-talk artifacts in lumbar spine MRI examinations. Forty four patients, who had routinely undergone a lumbar spine examination, participated in the study. The following pairs of sequences with and without BLADE were compared: a) T2 TSE Sagittal (SAG) in thirty two cases, and b) T2 TSE Axial (AX) also in thirty two cases.

View Article and Find Full Text PDF

Objectives: In the present work, we aim to identify changes in the cartilage texture of the injured knee in young, physically active, patients by computer analysis of MRI images based on 3.0T morphological sequences.

Methods: Fifty-three young patients with training injury or trauma in one knee underwent MRI and arthroscopy.

View Article and Find Full Text PDF

Purpose: To improve the computer-aided diagnosis of breast lesions, by designing a pattern recognition system (PR-system) on commercial graphics processing unit (GPU) cards using parallel programming and textural information from multimodality imaging.

Material And Methods: Patients with histologically verified breast lesions underwent both ultrasound (US) and digital mammography (DM), lesions were outlined on the images by an experienced radiologist, and textural features were calculated. The PR-system was designed to provide highest possible precision by programming in parallel the multiprocessors of the NVIDIA's GPU cards, GeForce 8800GT or 580GTX, and using the CUDA programming framework and C++.

View Article and Find Full Text PDF

The aim was to design a pattern-recognition (PR) system for discriminating between normal and pathological knee articular cartilage of the medial femoral (MFC) and tibial condyles (MTC). The data set comprised segmented regions of interest (ROIs) from coronal and sagittal 3-T magnetic resonance images of the MFC and MTC cartilage of young patients, 28 with abnormality-free knee and 16 with pathological findings. The PR system was designed employing the probabilistic neural network classifier, textural features from the segmented ROIs and the leave-one-out evaluation method, while the PR system's precision to "unseen" data was assessed by employing the external cross-validation method.

View Article and Find Full Text PDF