Environ Sci Atmos
September 2023
Pellet combustion in residential heating stoves has increased globally during the last decade. Despite their high combustion efficiency, the widespread use of pellet stoves is expected to adversely impact air quality. The atmospheric aging of pellet emissions has received even less attention, focusing mainly on daytime conditions, while the degree to which pellet emissions undergo night-time aging as well as the role of relative humidity remain poorly understood.
View Article and Find Full Text PDFEnviron Sci Process Impacts
October 2023
Chlorine plays an important role in tropospheric oxidation processes, in both marine and continental environments. Although modeling studies have explored the importance of halogen chemistry, uncertainty remains in associated chemical mechanisms and fundamental kinetics parameters. Prior kinetics measurements of multiphase halogen recycling reactions have been largely performed with dilute, bulk solutions, leaving unexplored more realistic chemical systems which have high solute concentrations and are internally mixed with both halide and organic components.
View Article and Find Full Text PDFMonochloramine, dichloramine and trichloramine (NHCl, NHCl, NCl) are measured in the ambient atmosphere, in downtown Toronto in summer (median 39, 15 and 2.8 ppt) and winter (median 11, 7.3 and 0.
View Article and Find Full Text PDFHigh loadings of biomass burning (BB) aerosol particles from wildfire or residential heating sources can be present in both outdoor and indoor environments, where they deposit onto surfaces such as walls and furniture. These pollutants can interact with oxidants in both the aerosol and deposited forms. Hypochlorous acid (HOCl), a strong oxidant emitted during cleaning with chlorine-cleaning agents such as bleach, can attain mixing ratios of hundreds of ppbv indoors; moreover, lower mixing ratios are naturally present outdoors.
View Article and Find Full Text PDFParticulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7-34% and producing 1-38 μg m of secondary organic aerosol (5-80% increase over the fresh organic aerosol) after 30 min of exposure to NO radicals in the chamber (corresponding to 1-3 h of exposure to typical nighttime NO radical concentrations in an urban environment).
View Article and Find Full Text PDFA dual smog chamber system was used to quantify the formation rates of secondary organic and inorganic aerosol in an urban environment (Pittsburgh, US). Ambient air was introduced in both chambers, and HONO photolysis was used to produce hydroxyl radicals (OH) in the perturbed chamber. The second chamber was used as a reference.
View Article and Find Full Text PDF