Publications by authors named "Spinedi A"

The cytotoxic effects of N-acetylsphingosine (C2-Cer) and N-hexanoylsphingosine (C6-Cer) were compared together with their specific intracellular accumulation profiles and metabolism in human CHP-100 neuroepithelioma cells. The two short-chain ceramides, administered in the culture medium at an equimolar concentration, evoked a differential apoptotic response, with C6-Cer showing markedly more cytotoxic than C2-Cer. Apoptosis, that was suppressed in both cases by inhibition of caspase-9, but not of caspase-8, associated with a higher intracellular accumulation of C6-Cer over C2-Cer, notwithstanding C6-Cer was actively metabolized by direct glucosylation or by conversion to natural ceramide via the sphingosine salvage pathway, whereas C2-Cer was apparently metabolically inhert.

View Article and Find Full Text PDF

Cells actively metabolize exogenously administered N-hexanoylsphingosine (C6-Cer) to natural (i.e. long-chain) ceramide (LC-Cer) via the sphingosine (Sph) salvage pathway, namely via C6-Cer deacylation and Sph reacylation with a long-chain fatty acid.

View Article and Find Full Text PDF

N-Hexanoylsphingosine (C6-Cer) is currently being evaluated as an antineoplastic agent, after preclinical studies showing its property to reduce tumor growth. Herein it is reported that the cytotoxic effect of C6-Cer, as observed in CHP-100 neurotumor cells, impinges on its continuous uptake from the culture medium, ensuring maintainance of elevated steady-state intracellular levels, in the face of the rapid metabolic removal. C6-Cer metabolism not only does occur by direct glucosylation but is also relevantly driven by utilization via the sphingosine salvage pathway, leading to accumulation of natural ceramide that, in CHP-100 cells, has been demonstrated to lack apoptotic properties.

View Article and Find Full Text PDF

Chemosensitization of HepG2 cells to doxorubicin by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol neither impinged on downregulation of P-glycoprotein expression nor on severe impairment of its activity. Moreover, differently from verapamil, a potent P-glycoprotein inhibitor, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitized HepG2 cells in a fashion that was insensitive to the pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. At concentrations exceeding the one employed for chemosensitization, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol was by itself strongly toxic to HepG2 cells, and also this effect was insensitive to the pancaspase inhibitor.

View Article and Find Full Text PDF

It has been previously reported that treatment of CHP-100 human neuroepithelioma cells with N-hexanoylsphingosine (C6-Cer) induces intracellular accumulation of long-chain ceramide (LC-Cer) and apoptosis. Herein, we investigated the existence of any causal relationship between the two phenomena. We report that C6-Cer-evoked LC-Cer accumulation is potently attenuated by the ceramide synthase inhibitor fumonisin B1; however, fumonisin B1 neither affects the apoptotic response evoked by C6-Cer administration, nor is toxic by itself to CHP-100 cells.

View Article and Find Full Text PDF

Chemotaxis induction is a major effect evoked by stimulation of the chemokine receptor CXCR4 with its sole ligand CXCL12. We now report that treatment of CHP-100 human neuroepithelioma cells with the glucosylceramide synthase (GCS) inhibitor DL-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol inhibits CXCR4-dependent chemotaxis. We provide evidence that the phenomenon is not due to unspecific effects of the inhibitor employed and that inhibition of GCS neither affects total or plasmamembrane CXCR4 expression, nor CXCL12-induced Ca(2+) mobilization.

View Article and Find Full Text PDF

We have previously reported that HepG2 human hepatocarcinoma cells are sensitized to doxorubicin-induced apoptosis by the glucosylceramide synthase inhibitor d,l-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) but not by the more specific inhibitor d,l-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP). Herein we investigated whether the chemosensitizing action of PDMP impinged on any unspecific effect of this compound on doxorubicin-induced expression of p53 and/or p21(Cip1/Waf1), namely two proteins reported to modulate the apoptotic response to DNA-damaging agents, in a positive or negative fashion, respectively. We show that, in HepG2 cells, PDMP did not substantially affect doxorubicin-induced p53 upregulation, whereas drug-evoked upregulation of p21(Cip1/Waf1) was markedly attenuated.

View Article and Find Full Text PDF

We have previously shown that the protein phosphatase inhibitor okadaic acid (OA) induces caspase-3 activation and apoptosis in CHP-100 human neuroepithelioma cells. Herein we provide a more general picture of the effects brought about by OA in this system, also investigating whether caspase activation is necessary for apoptosis induction. We report that incubation for 24 h with 10 nM OA induced a large fraction of the cell population to undergo premature chromosome condensation (PCC) or mitotic arrest, but not apoptosis.

View Article and Find Full Text PDF

We studied whether cell detachment from the matrix, observed during ceramide-induced apoptosis, is secondary to completion of the apoptotic program. CHP-100 neuroepithelioma cells exposed to N-hexanoylsphingosine (C(6)-Cer) underwent detachment from the substrate and apoptosis with slow kinetics. Apoptotic cells were fairly completely recovered in the detached fraction, that, differently from the adherent counterpart, displayed the hallmarks of caspase 3 activation, as well as poly-(ADP)ribose polymerase (PARP) cleavage and focal adhesion kinase (FAK) downregulation.

View Article and Find Full Text PDF

It has been proposed that ceramide mediates anthracyclin-induced apoptosis and that drug resistance may arise due to upregulated removal of this active lipid through glucosylation. We report that HepG2 hepatoma cells displayed only a modest apoptotic response to doxorubicin treatment, accompanied by a substantial elevation of ceramide levels only at toxic drug concentrations. D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP), used at concentrations causing a 90% inhibition of ceramide glucosylation, enhanced doxorubicin-elicited ceramide elevation, but only PDMP potentiated apoptosis.

View Article and Find Full Text PDF

Caspase-dependent apoptosis induced by okadaic acid (OA) in CHP-100 neuroepithelioma cells has previously been shown to associate with a rapid and sustained elevation in intracellular ceramide concentration. We now report that treatment of CHP-100 cells with OA also evoked a rapid elevation in glucosylceramide levels that was maintained at steady state as cells underwent apoptosis; moreover, as observed for ceramide, OA-induced glucosylceramide accumulation was not blocked by fumonisin B1. Remarkably, when cell death was prevented by caspase inhibition, glucosylceramide accumulation was potentiated and ceramide elevation reduced, thus suggesting that, during apoptosis completion, accumulation of ceramide was partly driven by impairment of its glucosylation through a caspase-dependent mechanism.

View Article and Find Full Text PDF

Doxorubicin (0.5 microgram/ml) induced caspase-dependent apoptosis in SH-SY5Y neuroblastoma and CHP-100 neuroepithelioma cells. The apoptotic response started to be evident approximately 15 h after drug administration and, as monitored over a 48-h period, was more pronounced in CHP-100 than in SH-SY5Y cells.

View Article and Find Full Text PDF

Treatment of the human promonocytic cell line U937 with all-trans-retinoic acid (RA) commits these cells to apoptosis, which can be triggered by simply increasing intracellular calcium levels by the ionophore A23187. RA treatment of U937 cells is characterized by a decrease in Bcl-2 and marked induction of "tissue" transglutaminase (tTG) gene expression. In this study, we show that the inhibition of tTG expression in U937 cells undergoing apoptosis prevents their death.

View Article and Find Full Text PDF

The protein phosphatase inhibitor okadaic acid (OA) dose-dependently induced apoptosis in CHP-100 neuroepithelioma cells when administered for 24 h at concentrations ranging from 10 - 100 nM. Apoptosis was largely, albeit not completely, dependent on cystein protease (caspase) activation. CPP32 processing and poly(ADP-ribose) polymerase (PARP) cleavage started to be observed only at 20 nM OA; moreover, the caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.

View Article and Find Full Text PDF

We report that apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells associates with accumulation of monohexosylsphingolipids produced not only by short-chain ceramide glycosylation but also through glycosylation of a ceramide pool endogenously produced. By high-performance thin layer chromatography on borate silica gel plates, newly formed monohexosylsphingolipids were identified as glucosylceramides (GluCer); however, accumulation of lactosylceramide or higher-order glycosphingolipids was not observed. GluCer accumulation was fully suppressed by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol; moreover, while this inhibitor had no effect on cell viability when administered alone, it markedly potentiated the apoptotic effect of C6-Cer.

View Article and Find Full Text PDF

We report that N-oleoylethanolamine (NOE), widely employed as a ceramidase inhibitor, also inhibits glucosylation of naturally occurring ceramides. When CHP-100 neuroepithelioma cells were exposed for 18h to non-toxic NOE concentrations (i.e.

View Article and Find Full Text PDF

A major problem in assessing the role of calpains in apoptosis induction concerns the fact that calpain inhibitors can also impair the activity of the proteasome, also reported to be involved in apoptosis. Herein we showed that apoptosis induced by calphostin C in U937 human promonocytic leukemia cells was associated, at its onset, with enhanced protein (poly)ubiquitination. This observation prompted us to study whether protein degradation through the ubiquitin/proteasome pathway was involved in apoptosis induction.

View Article and Find Full Text PDF

Recent evidence suggests that untimely retinoblastoma protein (RB) dephosphorylation and/or proteolytic degradation might provide key events down-stream cysteine protease (caspase) activation in apoptosis induction. We have dealt with this issue by studying apoptosis induced by N-hexanoylsphingosine (C6-Cer) in CHP-100 human neuroepithelioma cells, maintained in complete growth medium. We report that C6-Cer-induced apoptosis occurred predominantly in G1/S phases of the cycle and was associated with RB dephosphorylation, in the setting of negligible Bcl-2 expression.

View Article and Find Full Text PDF

The retinoblastoma gene product (pRB) plays an important role in controlling both cell release from the G1 phase and apoptosis. We show here that in the early phases of apoptosis, pRB is posttranslationally modified by a tissue transglutaminase (tTG)-catalyzed reaction. In fact, by employing a novel haptenized lysis synthetic substrate which allows the isolation of glutaminyl-tTG substrates in vivo, we identified pRB as a potential tTG substrate in U937 cells undergoing apoptosis.

View Article and Find Full Text PDF

In the human neuroblastoma cell line SK-N-BE(2), arachidonic acid (AA), supplied in the medium at micromolar concentrations, markedly enhanced [14C]stearic acid (SA) (but not [14C]palmitic acid or [14C]oleic acid) incorporation into phosphatidylinositol (PtdIns). AA failed to stimulate [14C]SA incorporation into PtdIns precursors, namely phosphatidic acid and cytidinediphosphodiacylglycerol: furthermore, enhanced [14C]SA incorporation, brought about by exogenously administered AA, was not restricted to PtdIns tetraenoic species. When cells were pulsed for 1 h with [14C]SA (either in the presence or absence of AA) and then reincubated in AA- and [14C]SA-free medium, a marked loss of radioactivity from PtdIns was observed, that however was restricted to molecular species other than tetraenoic.

View Article and Find Full Text PDF

When SK-N-BE(2) human neuroblastoma cells were exposed for 1h to growth medium supplemented with [14C]arachidonic acid (AA) at final concentrations ranging from 1 microM to 100 microM, an amount of this fatty acid was uptaken ranging form a 2% to a 120% of that present in cells at steady state. As more [14C]AA was uptaken by cells, a larger fraction was progressively incorporated into triacylglycerols (TAG) in comparison to phospholipids (PL), with minor amounts remaining in a free form. By gas chromatographic analysis it was estimated that TAG from cells grown in ordinary medium contained about 2 nmoles AA per mg protein, but, after 1 h exposure to medium supplemented with 100 microM AA (label-free) this value rose to about 28 nmoles/mg protein; furthermore, as estimated on the basis of total fatty acid content, TAG mass was increased by a 16%.

View Article and Find Full Text PDF

Stimulation of SK-N-BE(2) cells with 1 mM carbachol (Cch) elicited phosphoinositide (PPI) hydrolysis and a rapid elevation of cytosolic Ca2+ concentration ([Ca2+]i) from 115 nM to about 500 nM, followed by a plateau around 200 nM. In myo [3H]inositol-labelled cells, Cch-evoked accumulation of [3H]inositol phosphate (IPs) was not affected when [Ca2+]i was clamped at resting by cell loading with 10 microM BAPTA/AM; under these conditions, maximal 1,4,5-inositol trisphosphate accumulation was not reduced either. When [Ca2+]i was clamped around 700 nM by cell treatment with 600 nM ionomycin, Cch-evoked [3H]IPs accumulation was enhanced by less than 20%, but it was impaired by a 30% and a 55% after [Ca2+]i reduction to about 70 nM and 35-50 nM, by cell loading with 20 microM or 40 microM BAPTA/AM, respectively.

View Article and Find Full Text PDF

Preliminary data have shown that IL-6 may act as an autocrine growth factor to control proliferation. We further characterised the role of IL-6 in tumour growth as an autocrine/paracrine growth factor in neuroectodermal tumours. We evaluated the production and secretion of IL-6 by seven human melanoma, five neuroblastoma and one glioblastoma cell lines.

View Article and Find Full Text PDF

We report that upon muscarinic stimulation of SK-N-BE(2) human neuroblastoma cells, the extent of phosphoinositide-derived diacylglycerol (DG) conversion to phosphatidic acid (PA), operated by a DG kinase, is dependent on the potency of receptor stimulation and correlates with the reduction of phosphatidylinositol 4,5-bisphosphate mass. Evidence is provided that agonist-evoked Ca2+ mobilisation or protein kinase activation are not key events in triggering receptor-generated DG conversion to PA; furthermore, the phenomenon is compartmentalized, namely it occurs within a topologically restricted area that is poorly accessible to DG artificially generated by cell treatment with bacterial phosphatidylinositol-specific phospholipase C. Possible mechanisms driving regulation of the DG kinase operating in the transduction system investigated are discussed.

View Article and Find Full Text PDF