Publications by authors named "Spieth J"

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect.

View Article and Find Full Text PDF

In the early stage of the C. elegans sequencing project, the ab initio gene prediction program Genefinder was used to find protein-coding genes. Subsequently, protein-coding genes structures have been actively curated by WormBase using evidence from all available data sources.

View Article and Find Full Text PDF

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans.

View Article and Find Full Text PDF

Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver.

View Article and Find Full Text PDF

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields.

View Article and Find Full Text PDF

The Caenorhabditis elegans genome sequence was published over a decade ago; this was the first published genome of a multi-cellular organism and now the WormBase project has had a decade of experience in curating this genome's sequence and gene structures. In one of its roles as a central repository for nematode biology, WormBase continues to refine the gene structure annotations using sequence similarity and other computational methods, as well as information from the literature- and community-submitted annotations. We describe the various methods of gene structure curation that have been tried by WormBase and the problems associated with each of them.

View Article and Find Full Text PDF

WormBase (http://www.wormbase.org) is a central data repository for nematode biology.

View Article and Find Full Text PDF

Background: The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex.

View Article and Find Full Text PDF

Throughout the C. elegans sequencing project Genefinder was the primary protein-coding gene prediction program. These initial predictions were manually reviewed by curators as part of a "first-pass annotation" and are actively curated by WormBase staff using a variety of data and information.

View Article and Find Full Text PDF

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution.

View Article and Find Full Text PDF

WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research.

View Article and Find Full Text PDF

WormBase (http://wormbase.org), a model organism database for Caenorhabditis elegans and other related nematodes, continues to evolve and expand. Over the past year WormBase has added new data on C.

View Article and Find Full Text PDF

Escherichia coli is a model laboratory bacterium, a species that is widely distributed in the environment, as well as a mutualist and pathogen in its human hosts. As such, E. coli represents an attractive organism to study how environment impacts microbial genome structure and function.

View Article and Find Full Text PDF

WormBase (http://wormbase.org), the public database for genomics and biology of Caenorhabditis elegans, has been restructured for stronger performance and expanded for richer biological content. Performance was improved by accelerating the loading of central data pages such as the omnibus Gene page, by rationalizing internal data structures and software for greater portability, and by making the Genome Browser highly customizable in how it views and exports genomic subsequences.

View Article and Find Full Text PDF

We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM).

View Article and Find Full Text PDF

Human chromosome 2 is unique to the human lineage in being the product of a head-to-head fusion of two intermediate-sized ancestral chromosomes. Chromosome 4 has received attention primarily related to the search for the Huntington's disease gene, but also for genes associated with Wolf-Hirschhorn syndrome, polycystic kidney disease and a form of muscular dystrophy. Here we present approximately 237 million base pairs of sequence for chromosome 2, and 186 million base pairs for chromosome 4, representing more than 99.

View Article and Find Full Text PDF

WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth.

View Article and Find Full Text PDF

The sequence of any genome becomes most useful for biological experimentation when a complete and accurate gene set is available. Gene prediction programs offer an efficient way to generate an automated gene set. Manual annotation, when performed by experienced annotators, is more accurate and complete than automated annotation.

View Article and Find Full Text PDF

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years.

View Article and Find Full Text PDF

WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes.

View Article and Find Full Text PDF

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C.

View Article and Find Full Text PDF

Human chromosome 7 has historically received prominent attention in the human genetics community, primarily related to the search for the cystic fibrosis gene and the frequent cytogenetic changes associated with various forms of cancer. Here we present more than 153 million base pairs representing 99.4% of the euchromatic sequence of chromosome 7, the first metacentric chromosome completed so far.

View Article and Find Full Text PDF

WormBase (http://www.wormbase.org/) is a web-accessible central data repository for information about Caenorhabditis elegans and related nematodes.

View Article and Find Full Text PDF

Salmonella enterica subspecies I, serovar Typhimurium (S. typhimurium), is a leading cause of human gastroenteritis, and is used as a mouse model of human typhoid fever. The incidence of non-typhoid salmonellosis is increasing worldwide, causing millions of infections and many deaths in the human population each year.

View Article and Find Full Text PDF

In Caenorhabditis elegans, polycistronic pre-mRNAs are processed by cleavage and polyadenylation at the 3' ends of the upstream genes and trans splicing, generally to the specialized spliced leader SL2, at the 5' ends of the downstream genes. Previous studies have indicated a relationship between these two events in the processing of a heat shock-induced gpd-2-gpd-3 polycistronic pre-mRNA. Here, we report mutational analysis of the intercistronic region of this operon by linker scan analysis.

View Article and Find Full Text PDF