Publications by authors named "Speth T"

Adding new unit operations to drinking water treatment systems requires consideration of not only efficacy for its design purpose but also costs, water quality characteristics, impact on overall regulatory compliance, and impact of other treatment unit operations. Here, pilot study results for ion exchange (IX) and granular activated carbon (GAC) are presented for a utility with both per- and polyfluoroalkyl substances (PFAS) and volatile organic contaminant removal needs. Specifically, the impact of upstream air stripping and phosphate addition on PFAS treatment performance was evaluated.

View Article and Find Full Text PDF

Landfills manage materials containing per- and polyfluoroalkyl substances (PFAS) from municipal solid waste (MSW) and other waste streams. This manuscript summarizes state and federal initiatives and critically reviews peer-reviewed literature to define best practices for managing these wastes and identify data gaps to guide future research. The objective is to inform stakeholders about waste-derived PFAS disposed of in landfills, PFAS emissions, and the potential for related environmental impacts.

View Article and Find Full Text PDF

The feasibility of using a 2 fractional factorial design to screen the relative importance of six water quality and operational factors in the removal of microcystin-LR (MC-LR) by powdered activated carbon (PAC) was evaluated through jar testing. The factors were: PAC type, PAC dose, total organic carbon (TOC) concentration, turbidity, alum dose, and timing of PAC versus coagulant application. Follow-up tests were performed to examine the interaction of PAC dose and TOC concentrations.

View Article and Find Full Text PDF

No studies have looked at the effects of cumulative sleep restriction (CSR) on sleep architecture or the power spectrum of sleep EEG (electroencephalogram) in school-age children, as recorded by PSG (polysomnography). This is true for both typically developing (TD) children and children with ADHD (attention deficit/hyperactivity disorder), who are known to have more sleep difficulties. Participants were children (ages 6-12 years), including 18 TD and 18 ADHD, who were age- and sex-matched.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a group of chemicals that have gained interest because some PFAS have been shown to have negative health effects and prolonged environmental and biological persistence. Chemicals classified as PFAS have a wide range of chemical moieties that impart widely variable properties, leading to a range of water treatment process efficacies. The Polanyi Potential Adsorption Theory was used to estimate Freundlich isotherm parameters to predict the efficacy of granular activated carbon (GAC) treatment for 428 PFAS chemicals for which the vast majority had no previously published treatment data.

View Article and Find Full Text PDF

Utilities often test the effectiveness of different granular activated carbons (GACs) to determine which is most advantageous for their system. For surface water systems, in particular, the seasonal and annual variability of natural organic matter (NOM) in the source water makes it difficult to benchmark the effectiveness of GACs over multiple contract periods. This study produced stable, lyophilized NOM from the filtered water (FW), i.

View Article and Find Full Text PDF

The development of remediation technology for Per- and poly-fluoroalkyl substances (PFAS) has become one of the nation's top research priorities as adverse impacts to environmental and human health have been increasingly identified. Of various water treatment routes, high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO) are considered most promising by virtue of the excellent rejection of both short- and long-chain PFAS and the proven technological maturity demonstrated with various water sources. Consequently, research activities have rapidly increased to accommodate research needs to advance NF and RO processes targeting PFAS removal from the aquatic environment.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are increasingly of interest to drinking water utilities due to state regulations, the release of federal and state health advisories, and public concern. Pilot-scale data were fitted for 16 PFAS species and five commercial-activated carbons using an open-source pore and surface diffusion model that includes an automated parameter-fitting tool. The estimated model parameters are presented, and an uncertainty analysis was evaluated considering the expected temporal variability of influent concentrations.

View Article and Find Full Text PDF

Over the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS), which are present in many waters, have detrimental impacts on human health and the environment. Reverse osmosis (RO) and nanofiltration (NF) have shown excellent PFAS separation performance in water treatment; however, these membrane systems do not destroy PFAS but produce concentrated residual streams that need to be managed. Complete destruction of PFAS in RO and NF concentrate streams is ideal, but long-term sequestration strategies are also employed.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are receiving a great deal of attention from regulators, water utilities, and the general public. Anion-exchange resins have shown high capacities for removal of these substances from water, but there is currently a paucity of ion-exchange treatment models available to evaluate performance. In this work, important theoretical and practical considerations are discussed for modeling PFAS removal from drinking water using gel-type, strong-base anion-exchange resin in batch and column processes.

View Article and Find Full Text PDF

When choosing a treatment technology for nitrate or perchlorate removal, drinking water utilities overwhelmingly choose ion exchange. However, of late, biological treatment and point-of-use systems have received a great deal of attention. This article utilizes several new U.

View Article and Find Full Text PDF

Objectives/background: Correlational studies show that short sleep is associated with negative daytime outcomes in school-aged children, but there are few experimental sleep manipulation studies to assess whether this is a causal relation. The aim of this study was to determine the impact of mild, cumulative sleep restriction on daytime functioning of typically developing (TD) children and children with attention-deficit/hyperactivity disorder (ADHD).

Participants: A total of 36 school-aged children (n = 18 TD; n = 18 ADHD), aged 6-11 years participated.

View Article and Find Full Text PDF

In recent years, environmental lead (Pb) exposure through drinking water has resulted in community public health concerns. To understand potential impacts on blood Pb levels (BLLs) from drinking water Pb reduction actions (i.e.

View Article and Find Full Text PDF

Binge drinking peaks in emerging adulthood and is associated with a myriad of negative consequences. Research indicates that social network members have a significant influence on binge drinking. In particular, theory suggests that drinking habits of romantic partners and peers have a stronger influence on emerging-adult binge drinking than do drinking habits of siblings and parents.

View Article and Find Full Text PDF

Per-and polyfluoroalkyl substances (PFAS) occurrence in drinking water and treatment methods for their removal are reviewed. PFAS are fluorinated substances whose unique properties make them effective surface-active agents with uses ranging from stain repellants to fire-fighting foams. In response to concerns about drinking water contamination and health risks from PFAS exposure, the United States Environmental Protection Agency published Health Advisories (HAs) for perfluorooctanoic acid and perfluorooctane sulfonic acid.

View Article and Find Full Text PDF
Article Synopsis
  • A regression modeling method was created to analyze the toxicity contributions of various chemicals in complex mixtures of disinfection byproducts (DBPs) found in drinking water.
  • In a study involving Sprague-Dawley rats, exposure to a whole mixture of DBPs resulted in a slight but statistically significant delay in puberty acquisition for female offspring, while males showed no delay.
  • The research indicated that the delays in puberty observed in the whole mixture could be explained by the regulated DBPs in a defined mixture, demonstrating the potential of this modeling approach for studying other chemical mixtures and health effects.
View Article and Find Full Text PDF

Some epidemiological studies report associations between drinking water disinfection byproducts (DBPs) and adverse reproductive/developmental effects, e.g., low birth weight, spontaneous abortion, stillbirth, and birth defects.

View Article and Find Full Text PDF

Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking water research has been limited because the selected NOM sources are atypical of most drinking water sources. The purpose of this research was to demonstrate that reconstituted NOM from a lyophilized reverse-osmosis (RO) concentrate of a typical drinking water source closely represents DBP formation in the original NOM.

View Article and Find Full Text PDF

A developmental toxicity bioassay was used in three experiments to evaluate water concentrates for suitability in multigenerational studies. First, chlorinated water was concentrated 135-fold by reverse osmosis; select lost disinfection by-products were spiked back. Concentrate was provided as drinking water to Sprague-Dawley and F344 rats from gestation day 6 to postnatal day 6.

View Article and Find Full Text PDF

Estrogenic compounds have been shown to be present in surface waters, leading to concerns over their possible presence in finished drinking waters. In this work, two in vitro human cell line bioassays for estrogenicity were used to evaluate the removal of estrogens through conventional drinking water treatment using a natural water. Bench-scale studies utilizing chlorine, alum coagulation, ferric chloride coagulation, and powdered activated carbon (PAC) were conducted using Ohio River water spiked with three estrogens, 17β-estradiol, 17α-ethynylestradiol, and estriol.

View Article and Find Full Text PDF

Over the past 25 years, microwave (MW) chemistry has moved from a laboratory curiosity to a well-established synthetic technique used in many academic and industrial laboratories around the world. Although the overwhelming number of MW-assisted applications today are still performed on a laboratory (mL) scale, we expect that this enabling technology may be used on a larger, perhaps even production, scale in conjunction with radio frequency or conventional heating. Microwave chemistry is based on two main principles, the dipolar mechanism and the electrical conductor mechanism.

View Article and Find Full Text PDF

BaCO(3) dispersed PVC composites were prepared through a polymer re-precipitation method. The composites were tested for sulfate removal using rapid small scale column test (RSSCT) and found to significantly reduce sulfate concentration. The method was extended to synthesize barium carbonate-loaded silica aero-gels-polyvinyl chloride (PVC) polymer composites.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency's "Four Lab Study" involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia.

View Article and Find Full Text PDF

Although the herbicide atrazine has been reported to not react measurably with free chlorine during drinking water treatment, this work demonstrates that at contact times consistent with drinking water distribution system residence times, a transformation of atrazine can be observed. Some transformation products detected through the use of high performance liquid chromatography-electrospray mass spectrometry are consistent with the formation of N-chloro atrazine. The effects of applied chlorine, pH, and reaction time on the transformation reaction were studied to help understand the practical implications of the transformation on the accurate determination of atrazine in drinking waters.

View Article and Find Full Text PDF