We present a versatile flow-through tube passive sampling device (TPS), with a controllable feedwater volumetric flow, that can be calibrated against the feedwater load of organic micropollutants (OMPs). This semipassive approach has the advantage of a determinable water load feeding the sampling device. The design of the TPS allows for new sampling scenarios in closed piping while providing stable and controlled sampling conditions.
View Article and Find Full Text PDFNanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them.
View Article and Find Full Text PDFMolecules present a versatile platform for quantum information science and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical readout via emission.
View Article and Find Full Text PDFGiven the inconsistent results in the past, there is an ongoing debate whether and how deep brain stimulation in the subthalamic nucleus modifies cognitive control processes like response inhibition in persons with Parkinson's disease. In this study, we examined how the location of the stimulation volume within the subthalamic nucleus affects the performance in an antisaccade task but also how its structural connectivity is related to response inhibition. Antisaccade error rates and latencies were collected in 14 participants on and off deep brain stimulation in a randomized order.
View Article and Find Full Text PDFWhile deep brain stimulation (DBS) in the subthalamic nucleus (STN) improves motor functions in Parkinson's disease (PD), it may also increase impulsivity by interfering with the inhibition of reflexive responses. The aim of this study was to investigate if varying the pulse frequency of STN-DBS has a modulating effect on response inhibition and its neural correlates. For this purpose, 14 persons with PD repeated an antisaccade task in three stimulation settings (DBS off, high-frequency DBS (130 Hz), mid-frequency DBS (60 Hz)) in a randomized order, while eye movements and brain activity via high-density EEG were recorded.
View Article and Find Full Text PDFOzonation is an established solution for organic micropollutant (OMP) abatement in tertiary wastewater treatment. Biofiltration is the most common process for the biological post-treatment step, which is generally required to remove undesired oxidation products from the reaction of ozone with water matrix compounds. This study comparatively investigates the effect of filter media on the removal of organic contaminants and on biofilm properties for biologically activated carbon (BAC) and anthracite biofilters.
View Article and Find Full Text PDFCoherent coupling of defect spins with surrounding nuclei along with the endowment to read out the latter are basic requirements for an application in quantum technologies. We show that negatively charged boron vacancies (V) in hexagonal boron nitride (hBN) meet these prerequisites. We demonstrate Hahn-echo coherence of the V spin with a characteristic decay time = 15 μs, close to the theoretically predicted limit of 18 μs for defects in hBN.
View Article and Find Full Text PDFTriplet excited states in organic semiconductor materials and devices are notoriously difficult to detect and study with established spectroscopic methods. Yet, they are a crucial intermediate step in next-generation organic light emitting diodes (OLED) that employ thermally activated delayed fluorescence (TADF) to upconvert non-emissive triplets to emissive singlet states. In organic photovoltaic (OPV) devices, however, triplets are an efficiency-limiting exciton loss channel and are also involved in device degradation.
View Article and Find Full Text PDFSpin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale * of 30 ns.
View Article and Find Full Text PDFSpin defects in solid-state materials are strong candidate systems for quantum information technology and sensing applications. Here we explore in details the recently discovered negatively charged boron vacancies (V) in hexagonal boron nitride (hBN) and demonstrate their use as atomic scale sensors for temperature, magnetic fields and externally applied pressure. These applications are possible due to the high-spin triplet ground state and bright spin-dependent photoluminescence of the V.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) define a versatile structural paradigm combining attractive properties such as crystallinity, porosity, and chemical and structural modularity which are valuable for various applications. For the incorporation of COFs into optoelectronic devices, efficient charge carrier transport and intrinsic conductivity are often essential. Here, we report the synthesis of two imine-linked two-dimensional COFs, WTA and WBDT, featuring a redox-active Wurster-type motif based on the twisted tetragonal ,,','-tetraphenyl-1,4-phenylenediamine node.
View Article and Find Full Text PDFOptically active spin defects are promising candidates for solid-state quantum information and sensing applications. To use these defects in quantum applications coherent manipulation of their spin state is required. Here, we realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2021
Carbon chains with an odd number of C atoms are reactive intermediates with a high biradical character. Here we report a joint experimental and computational investigation of the dynamics of diphenylpropynylidene, CH-C-CH, in dichloromethane and ethanol. The biradical is generated by ultraviolet light from 1,3-diphenyldiazopropyne.
View Article and Find Full Text PDFIntracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1).
View Article and Find Full Text PDFStability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization.
View Article and Find Full Text PDFEfficient adsorption of certain trace organic chemicals (TOrCs) present in secondary treated municipal wastewater treatment plant (WWTP) effluents onto granular activated carbon (GAC) has already been demonstrated at lab- and full-scale. Due to high organic matter concentrations in WWTP effluents, GAC filters eventually develop a biofilm and turn into biological activated carbon filters (BAC), where removal of organic compounds is governed by biodegradation as well as by adsorption. However, determining TOrC breakthrough by conducting a long-term BAC column experiment to discern between the removal mechanisms is not possible due to competition for adsorption sites, fluctuating water quality, and other variables.
View Article and Find Full Text PDFOptically addressable spins in wide-bandgap semiconductors are a promising platform for exploring quantum phenomena. While colour centres in three-dimensional crystals such as diamond and silicon carbide were studied in detail, they were not observed experimentally in two-dimensional (2D) materials. Here, we report spin-dependent processes in the 2D material hexagonal boron nitride (hBN).
View Article and Find Full Text PDFThough bank filtration diminishes the loads of many trace organic compounds (TOrCs) present in the source water, still there is a wide uncertainty on the influence of local environmental conditions on biodegradation processes. This research addresses the fate and transport behaviour of 37 trace organic compounds at a bank filtration site in Germany over a relatively long-time span of six years. Using two-dimensional heat and reactive transport modelling in FEFLOW, TOrCs are classified according to their occurrence in bank filtration wells with a residence time of up to 4 months.
View Article and Find Full Text PDFOne of the challenges in the field of quantum sensing and information processing is to selectively address and coherently manipulate highly homogeneous qubits subject to external perturbations. Here, we present room-temperature coherent control of high-dimensional quantum bits, the so-called qudits, associated with vacancy-related spins in silicon carbide enriched with nuclear spin-free isotopes. In addition to the excitation of a spectrally narrow qudit mode at the pump frequency, several other modes are excited in the electron spin resonance spectra whose relative positions depend on the external magnetic field.
View Article and Find Full Text PDFHerein, two new quadrupolar acceptor-π-donor-π-acceptor (A-π-D-π-A) chromophores have been prepared featuring a strongly electron-donating diborene core and strongly electron-accepting dimesitylboryl (BMes ) and bis(2,4,6-tris(trifluoromethyl)phenyl)boryl (B Mes ) end groups. Analysis of the compounds by NMR spectroscopy, X-ray crystallography, cyclic voltammetry, and UV/Vis-NIR absorption and emission spectroscopy indicated that the compounds have extended conjugated π-systems spanning their B C cores. The combination of exceptionally potent π-donor (diborene) and π-acceptor (diarylboryl) groups, both based on trigonal boron, leads to very small HOMO-LUMO gaps, resulting in strong absorption in the near-IR region with maxima in THF at 840 and 1092 nm and very high extinction coefficients of ca.
View Article and Find Full Text PDFBackground: Even though the post-operative outcome varies greatly among patients with nodal positive colon cancer (UICC stage III), personalized prediction of systemic disease recurrence is currently insufficient. We investigated in a retrospective setting whether genetic and immunological biomarkers can be applied for stratification of distant metastasis occurrence risk.
Methods: Eighty four patients with complete resection (R0) of stage III colon cancer from two clinical centres were analysed for genetic biomarkers: microsatellite instability, oncogenic mutations in KRAS exon2 and BRAF exon15, expression of osteopontin and the metastasis-associated genes SASH1 and MACC1.
The investigation of the mechanisms of mechanochromic luminescence is of fundamental importance for the development of materials for photonic sensors, data storage, and luminescence switches. The structural origin of this phenomenon in phosphorescent molecular systems is rarely known and thus the formulation of structure-property relationships remains challenging. Changes in the M-M interactions have been proposed as the main mechanism with d coinage metal compounds.
View Article and Find Full Text PDFWater Sci Technol
January 2017
Adsorption onto powdered activated carbon (PAC) is a promising technique for the removal of organic micropollutants (OMPs) from treated wastewater. To enhance the adsorption efficiency, PAC is recycled back into the adsorption stage. This technique was examined in pilot scale in comparison to a reference without recirculation.
View Article and Find Full Text PDFA strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO).
View Article and Find Full Text PDFThis study investigates the applicability of UV absorbance measurements at 254 nm (UVA254) to serve as a simple and reliable surrogate parameter to monitor and control the removal of organic micropollutants (OMPs) in advanced wastewater treatment applying powdered activated carbon (PAC). Correlations between OMP removal and corresponding UVA254 reduction were determined in lab-scale adsorption batch tests and successfully applied to a pilot-scale PAC treatment stage to predict OMP removals in aggregate samples with good accuracy. Real-time UVA254 measurements were utilized to evaluate adapted PAC dosing strategies and proved to be effective for online monitoring of OMP removal.
View Article and Find Full Text PDF