Publications by authors named "Spergel D"

Article Synopsis
  • A neural network model was developed to predict the evolution of cosmological -body simulations, suggesting it effectively approximates the Green's function relating initial conditions to outcomes in complex, nonlinear scenarios.
  • The model was tested against various simpler configurations, demonstrating good generalization and the ability to learn physical principles from random Gaussian training data, which highlighted its strengths and weaknesses.
  • However, the model struggled with initial conditions that it wasn't trained on, specifically those involving transverse modes, and it achieved high accuracy when compared to traditional simulation methods for density and momentum power spectra, outperforming a fast simulation method called COLA.
View Article and Find Full Text PDF

Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period).

View Article and Find Full Text PDF

We introduce a Bayesian neural network model that can accurately predict not only if, but also when a compact planetary system with three or more planets will go unstable. Our model, trained directly from short N-body time series of raw orbital elements, is more than two orders of magnitude more accurate at predicting instability times than analytical estimators, while also reducing the bias of existing machine learning algorithms by nearly a factor of three. Despite being trained on compact resonant and near-resonant three-planet configurations, the model demonstrates robust generalization to both nonresonant and higher multiplicity configurations, in the latter case outperforming models fit to that specific set of integrations.

View Article and Find Full Text PDF

Cosmological neutrinos have their greatest influence in voids: These are the regions with the highest neutrino to dark matter density ratios. The marked power spectrum can be used to emphasize low-density regions over high-density regions and, therefore, is potentially much more sensitive than the power spectrum to the effects of neutrino masses. Using 22 000 N-body simulations from the Quijote suite, we quantify the information content in the marked power spectrum of the matter field and show that it outperforms the standard power spectrum by setting constraints improved by a factor larger than 2 on all cosmological parameters.

View Article and Find Full Text PDF

Any successful alternative gravity theory that obviates the need for dark matter must fit our cosmological observations. Measurements of microwave background polarization trace the large-scale baryon velocity field at recombination and show very strong O(1) baryon acoustic oscillations. Measurements of the large-scale structure of galaxies at low redshift show much weaker features in the spectrum.

View Article and Find Full Text PDF

We combine analytical understanding of resonant dynamics in two-planet systems with machine-learning techniques to train a model capable of robustly classifying stability in compact multiplanet systems over long timescales of [Formula: see text] orbits. Our Stability of Planetary Orbital Configurations Klassifier (SPOCK) predicts stability using physically motivated summary statistics measured in integrations of the first [Formula: see text] orbits, thus achieving speed-ups of up to [Formula: see text] over full simulations. This computationally opens up the stability-constrained characterization of multiplanet systems.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) neuron activity and GnRH secretion are essential for fertility in mammals. Here, I review findings from mouse studies on the direct modulation of GnRH neuron activity and GnRH secretion by non-peptide neurotransmitters (GABA, glutamate, dopamine, serotonin, norepinephrine, epinephrine, histamine, ATP, adenosine, and acetylcholine), gasotransmitters (nitric oxide and carbon monoxide), and gliotransmitters (prostaglandin E2 and possibly GABA, glutamate, and ATP). These neurotransmitters, gasotransmitters, and gliotransmitters have been shown to directly modulate activity and/or GnRH secretion in GnRH neurons or (brain slices), from postnatal through adult mice, or in embryonic or immortalized mouse GnRH neurons.

View Article and Find Full Text PDF

Most brain neurons are active in waking, but hypothalamic neurons that synthesize the neuropeptide melanin-concentrating hormone (MCH) are claimed to be active only during sleep, particularly rapid eye movement (REM) sleep. Here we use deep-brain imaging to identify changes in fluorescence of the genetically encoded calcium (Ca) indicator GCaMP6 in individual hypothalamic neurons that contain MCH. An electrophysiology study determined a strong relationship between depolarization and Ca fluorescence in MCH neurons.

View Article and Find Full Text PDF

Based on pharmacological studies, corticotropin-releasing hormone (CRH) and its receptors play a leading role in the inhibition of the hypothalamic-pituitary-gonadal (HPG) axis during acute stress. To further study the effects of CRH receptor signaling on the HPG axis, we generated and/or employed male mice lacking CRH receptor type 1 (CRHR1) or type 2 (CRHR2) in gonadotropin-releasing hormone neurons, GABAergic neurons, or in all central neurons and glia. The deletion of CRHRs revealed a preserved decrease of plasma luteinizing hormone (LH) in response to either psychophysical or immunological stress.

View Article and Find Full Text PDF

Gonadotropin-releasing hormone (GnRH) secretion from GnRH neurons and its modulation by neuropeptides are essential for mammalian reproduction. Here, I review the neuropeptides that have been shown to act directly and that may also act indirectly, on GnRH neurons, the reproduction-related processes with which the neuropeptides may be associated or the physiological information they may convey, as well as their cognate receptors, signaling pathways and roles in the modulation of GnRH neuronal firing, [Ca], GnRH secretion and reproduction. The review focuses on recent research in mice, which offer the most tractable experimental system for studying mammalian GnRH neurons.

View Article and Find Full Text PDF

We measure the gravitational lensing shear signal around dark matter halos hosting constant mass galaxies using light sources at z∼1 (background galaxies) and at the surface of last scattering at z∼1100 (the cosmic microwave background). The galaxy shear measurement uses data from the CFHTLenS survey, and the microwave background shear measurement uses data from the Planck satellite. The ratio of shears from these cross-correlations provides a purely geometric distance measurement across the longest possible cosmological lever arm.

View Article and Find Full Text PDF

The kinematic Sunyaev-Zel'dovich (KSZ) effect-the Doppler boosting of cosmic microwave background (CMB) photons due to Compton scattering off free electrons with nonzero bulk velocity-probes the abundance and the distribution of baryons in the Universe. All KSZ measurements to date have explicitly required spectroscopic redshifts. Here, we implement a novel estimator for the KSZ-large-scale structure cross-correlation based on projected fields: it does not require redshift estimates for individual objects, allowing KSZ measurements from large-scale imaging surveys.

View Article and Find Full Text PDF

We present significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range [0.1, 0.33].

View Article and Find Full Text PDF

The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect.

View Article and Find Full Text PDF

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.

View Article and Find Full Text PDF

A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space.

View Article and Find Full Text PDF

Using high-resolution microwave sky maps made by the Atacama Cosmology Telescope, we for the first time present strong evidence for motions of galaxy clusters and groups via microwave background temperature distortions due to the kinematic Sunyaev-Zel'dovich effect. Galaxy clusters are identified by their constituent luminous galaxies observed by the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey III. We measure the mean pairwise momentum of clusters, with a probability of the signal being due to random errors of 0.

View Article and Find Full Text PDF

Leptin and melanocortin signaling control ingestive behavior, energy balance, and substrate utilization, but only leptin signaling defects cause hypothalamic hypogonadism and infertility. Although GnRH neurons do not express leptin receptors, leptin influences GnRH neuron activity via regulation of immediate downstream mediators including the neuropeptides neuropeptide Y and the melanocortin agonist and antagonist, α-MSH, agouti-related peptide, respectively. Here we show that modulation of melanocortin signaling in female db/db mice through ablation of agouti-related peptide, or heterozygosity of melanocortin 4 receptor, restores the timing of pubertal onset, fertility, and lactation.

View Article and Find Full Text PDF

Kisspeptin plays an important role in puberty and subsequent fertility by activating its receptor, G-protein-coupled receptor 54 (GPR54), and increasing cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and gonadotropin-releasing hormone (GnRH) secretion in GnRH neurons. Yet the mechanism by which kisspeptin increases [Ca(2+)](i) in GnRH neurons remains to be fully elucidated. In other neurons, voltage-gated Ca(2+) channel (VGCC) activity has been shown to be inversely related to [Ca(2+)](i).

View Article and Find Full Text PDF

For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w = -1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe.

View Article and Find Full Text PDF

We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2° angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.

View Article and Find Full Text PDF

We present a theoretical estimate for a new observable: the cross correlation between the Lyman-alpha flux fluctuations in quasar spectra and the convergence of the cosmic microwave background as measured along the same line of sight. As a first step toward the assessment of its detectability, we estimate the signal-to-noise ratio using linear theory. Although the signal-to-noise is small for a single line of sight and peaks at somewhat smaller redshifts than those probed by the Lyman-alpha forest, we estimate a total signal-to-noise of 9 for cross correlating quasar spectra of SDSS-III with Planck and 20 for cross correlating with a future polarization based cosmic microwave background experiment.

View Article and Find Full Text PDF

Background: Secretion of gonadotropin-releasing hormone (GnRH) produced in neurons in the basal forebrain is the primary regulator of reproductive maturation and function in mammals. Peptidergic signals relating to circadian timing and energy balance are an important influence on the reproductive axis. The aim of this study was to investigate the innervation of GnRH neurons by peptidergic neurons.

View Article and Find Full Text PDF

The pubertal increase in GnRH secretion resulting in sexual maturation and reproductive competence is a complex process involving kisspeptin stimulation of GnRH neurons and requiring Ca(2+) and possibly other intracellular messengers. To determine whether the expression of Ca(2+) channels, or small-conductance Ca(2+)-activated K(+) (SK) channels, whose activity reflects cytoplasmic free Ca(2+) concentration, changes at puberty in GnRH neurons, Ca(2+) and SK currents in GnRH neurons were recorded in brain slices of juvenile [postnatal day (P) 10-21], pubertal (P28-P42), and adult (> or =P56) male GnRH-green fluorescent protein transgenic mice using perforated-patch and whole-cell techniques. Ca(2+) currents were inhibited by the Ca(2+) channel blocker Cd(2+) and showed marked heterogeneity but were on average similar in juvenile, pubertal, and adult GnRH neurons.

View Article and Find Full Text PDF