Publications by authors named "Spentzouris P"

We present a measurement of ν_{e} interactions from the Fermilab Booster Neutrino Beam using the MicroBooNE liquid argon time projection chamber to address the nature of the excess of low energy interactions observed by the MiniBooNE Collaboration. Three independent ν_{e} searches are performed across multiple single electron final states, including an exclusive search for two-body scattering events with a single proton, a semi-inclusive search for pionless events, and a fully inclusive search for events containing all hadronic final states. With differing signal topologies, statistics, backgrounds, reconstruction algorithms, and analysis approaches, the results are found to be either consistent with or modestly lower than the nominal ν_{e} rate expectations from the Booster Neutrino Beam and no excess of ν_{e} events is observed.

View Article and Find Full Text PDF

We report a measurement of the energy-dependent total charged-current cross section σ(E_{ν}) for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer (ν). Data corresponding to 5.3×10^{19} protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab booster neutrino beam with a mean neutrino energy of approximately 0.

View Article and Find Full Text PDF

We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8⟩  GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.

View Article and Find Full Text PDF

We present a search for the decays of a neutral scalar boson produced by kaons decaying at rest, in the context of the Higgs portal model, using the MicroBooNE detector. We analyze data triggered in time with the Fermilab NuMI neutrino beam spill, with an exposure of 1.93×10^{20} protons on target.

View Article and Find Full Text PDF

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{μ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{μ},μp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target.

View Article and Find Full Text PDF

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.

View Article and Find Full Text PDF

We present an algorithm that extends existing quantum algorithms for simulating fermion systems in quantum chemistry and condensed matter physics to include bosons in general and phonons in particular. We introduce a qubit representation for the low-energy subspace of phonons which allows an efficient simulation of the evolution operator of the electron-phonon systems. As a consequence of the Nyquist-Shannon sampling theorem, the phonons are represented with exponential accuracy on a discretized Hilbert space with a size that increases linearly with the cutoff of the maximum phonon number.

View Article and Find Full Text PDF

The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms.

View Article and Find Full Text PDF

Using high statistics samples of charged-current numu interactions, the MiniBooNE [corrected] Collaboration reports a measurement of the single-charged-pion production to quasielastic cross section ratio on mineral oil (CH2), both with and without corrections for hadron reinteractions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeV View Article and Find Full Text PDF

The MiniBooNE Collaboration reports a search for nu_{micro} and nu[over]_{micro} disappearance in the Deltam;{2} region of 0.5-40 eV;{2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation.

View Article and Find Full Text PDF

We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beam line at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle (6.3 degrees) with respect to the NuMI beam axis.

View Article and Find Full Text PDF

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46x10;{20} protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.

View Article and Find Full Text PDF

We present a new measurement of the difference between the nucleon strange and antistrange quark distributions from dimuon events recorded by the NuTeV experiment at Fermilab. This analysis is the first to use a complete next to leading order QCD description of charm production from neutrino scattering. Dimuon events in neutrino deep inelastic scattering allow direct and independent study of the strange and antistrange content of the nucleon.

View Article and Find Full Text PDF

The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of nu_(mu) CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector.

View Article and Find Full Text PDF

The MiniBooNE Collaboration reports first results of a search for nu e appearance in a nu mu beam. With two largely independent analyses, we observe no significant excess of events above the background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two-neutrino appearance-only oscillation model.

View Article and Find Full Text PDF

Limits on nu(mu)-->nu(e) and nu(mu)-->nu(e) oscillations are extracted using the NuTeV detector with sign-selected nu(mu) and nu(mu) beams. In nu(mu) mode, for the case of sin(2)2alpha = 1, Delta(m)(2)>2.6 eV(2) is excluded, and for Delta(m)(2)>>1000 eV(2), sin(2)2alpha>1.

View Article and Find Full Text PDF

The NuTeV Collaboration has extracted the electroweak parameter sin(2)theta(W) from the measurement of the ratios of neutral current to charged current nu and (-)nu cross sections. Our value, sin(2)theta((on-shell))(W) = 0.2277 +/- 0.

View Article and Find Full Text PDF

We report on the extraction of R = sigma(L)/sigma(T) from CCFR nu(mu)-Fe and nu(mu)-Fe differential cross sections. The CCFR differential cross sections do not show the deviations from the QCD expectations that are seen in the CDHSW data at very low and very high x. R as measured in nu(mu) scattering is in agreement with R as measured in muon and electron scattering.

View Article and Find Full Text PDF

The NuTeV experiment at Fermilab has used a sign-selected neutrino beam to perform a search for the lepton number violating process nu(mu)e(-)-->mu(-)nu(e), and to measure the cross section of the standard model inverse muon decay process nu(mu)e(-)-->mu(-)nu(e). NuTeV measures the inverse muon decay asymptotic cross-section slope sigma/E to be (13.8 +/- 1.

View Article and Find Full Text PDF

A search for long-lived neutral particles ( N0's) with masses above 2.2 GeV/c(2) that decay into at least one muon has been performed using an instrumented decay channel at the NuTeV experiment at Fermilab. Data were examined for particles decaying into the final states mumu, mu(e), and mu(pi).

View Article and Find Full Text PDF

A new structure function analysis of CCFR deep inelastic nu-N and nu-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x = 0.0045 and Q(2) = 0.3 GeV(2).

View Article and Find Full Text PDF

We report on the extraction of the structure functions F2 and DeltaxF(3) = xF(nu)(3)-xF(nu;)(3) from CCFR nu(mu)-Fe and nu;(mu)-Fe differential cross sections. The extraction is performed in a physics model-independent (PMI) way. This first measurement of DeltaxF(3), which is useful in testing models of heavy charm production, is higher than current theoretical predictions.

View Article and Find Full Text PDF