Replication stress, with its subsequent genome instability, is a hallmark of cancer from its earliest stages of development. Here, we describe assays that are sufficiently sensitive to detect intrinsic replicative stress and its consequences in primary mouse embryonic fibroblasts. First, we explain the non-denatured DNA fiber assay, a powerful tool to directly measure DNA replication kinetics via the dual-labeling of active replication forks.
View Article and Find Full Text PDFAccumulating evidence suggests that dormant DNA replication origins play an important role in the recovery of stalled forks. However, their functional interactions with other fork recovery mechanisms have not been tested. We previously reported intrinsic activation of the Fanconi anemia (FA) pathway in a tumor-prone mouse model (Mcm4chaos3) with a 60% loss of dormant origins.
View Article and Find Full Text PDFHELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive.
View Article and Find Full Text PDFReplication origin licensing builds a fundamental basis for DNA replication in all eukaryotes. This occurs during the late M to early G1 phases in which chromatin is licensed by loading of the MCM2-7 complex, an essential component of the replicative helicase. In the following S phase, only a minor fraction of chromatin-bound MCM2-7 complexes are activated to unwind the DNA.
View Article and Find Full Text PDFEukaryotic cells license far more origins than are actually used for DNA replication, thereby generating a large number of dormant origins. Accumulating evidence suggests that such origins play a role in chromosome stability and tumor suppression, though the underlying mechanism is largely unknown. Here, we show that a loss of dormant origins results in an increased number of stalled replication forks, even in unchallenged S phase in primary mouse fibroblasts derived from embryos homozygous for the Mcm4(Chaos3) allele.
View Article and Find Full Text PDF