Publications by authors named "Spencer V Muse"

Errors in multiple sequence alignments (MSAs) are known to bias many comparative evolutionary methods. In the context of natural selection analyses, specifically codon evolutionary models, excessive rates of false positives result. A characteristic signature of error-driven findings is unrealistically high estimates of dN/dS (e.

View Article and Find Full Text PDF

It is standard practice to model site-to-site variability of substitution rates by discretizing a continuous distribution into a small number, K, of equiprobable rate categories. We demonstrate that the variance of this discretized distribution has an upper bound determined solely by the choice of K and the mean of the distribution. This bound can introduce biases into statistical inference, especially when estimating parameters governing site-to-site variability of substitution rates.

View Article and Find Full Text PDF

Most molecular evolutionary studies of natural selection maintain the decades-old assumption that synonymous substitution rate variation (SRV) across sites within genes occurs at levels that are either nonexistent or negligible. However, numerous studies challenge this assumption from a biological perspective and show that SRV is comparable in magnitude to that of nonsynonymous substitution rate variation. We evaluated the impact of this assumption on methods for inferring selection at the molecular level by incorporating SRV into an existing method (BUSTED) for detecting signatures of episodic diversifying selection in genes.

View Article and Find Full Text PDF

HYpothesis testing using PHYlogenies (HyPhy) is a scriptable, open-source package for fitting a broad range of evolutionary models to multiple sequence alignments, and for conducting subsequent parameter estimation and hypothesis testing, primarily in the maximum likelihood statistical framework. It has become a popular choice for characterizing various aspects of the evolutionary process: natural selection, evolutionary rates, recombination, and coevolution. The 2.

View Article and Find Full Text PDF

Inference of how evolutionary forces have shaped extant genetic diversity is a cornerstone of modern comparative sequence analysis. Advances in sequence generation and increased statistical sophistication of relevant methods now allow researchers to extract ever more evolutionary signal from the data, albeit at an increased computational cost. Here, we announce the release of Datamonkey 2.

View Article and Find Full Text PDF

While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus [e.g., nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I].

View Article and Find Full Text PDF

Codon models of evolution have facilitated the interpretation of selective forces operating on genomes. These models, however, assume a single rate of non-synonymous substitution irrespective of the nature of amino acids being exchanged. Recent developments have shown that models which allow for amino acid pairs to have independent rates of substitution offer improved fit over single rate models.

View Article and Find Full Text PDF

Markov models of codon substitution are powerful inferential tools for studying biological processes such as natural selection and preferences in amino acid substitution. The equilibrium character distributions of these models are almost always estimated using nucleotide frequencies observed in a sequence alignment, primarily as a matter of historical convention. In this note, we demonstrate that a popular class of such estimators are biased, and that this bias has an adverse effect on goodness of fit and estimates of substitution rates.

View Article and Find Full Text PDF

The single rate codon model of non-synonymous substitution is ubiquitous in phylogenetic modeling. Indeed, the use of a non-synonymous to synonymous substitution rate ratio parameter has facilitated the interpretation of selection pressure on genomes. Although the single rate model has achieved wide acceptance, we argue that the assumption of a single rate of non-synonymous substitution is biologically unreasonable, given observed differences in substitution rates evident from empirical amino acid models.

View Article and Find Full Text PDF

To understand astrovirus biology, it is essential to understand factors associated with its evolution. The current study reports the genomic sequences of nine novel turkey astrovirus (TAstV) type 2-like clinical isolates. This represents, to our knowledge, the largest genomic-length data set available for any one astrovirus type.

View Article and Find Full Text PDF

The choice of a probabilistic model to describe sequence evolution can and should be justified. Underfitting the data through the use of overly simplistic models may miss out on interesting phenomena and lead to incorrect inferences. Overfitting the data with models that are too complex may ascribe biological meaning to statistical artifacts and result in falsely significant findings.

View Article and Find Full Text PDF

Studies of microbial eukaryotes have been pivotal in the discovery of biological phenomena, including RNA editing, self-splicing RNA, and telomere addition. Here we extend this list by demonstrating that genome architecture, namely the extensive processing of somatic (macronuclear) genomes in some ciliate lineages, is associated with elevated rates of protein evolution. Using newly developed likelihood-based procedures for studying molecular evolution, we investigate 6 genes to compare 1) ciliate protein evolution to that of 3 other clades of eukaryotes (plants, animals, and fungi) and 2) protein evolution in ciliates with extensively processed macronuclear genomes to that of other ciliate lineages.

View Article and Find Full Text PDF

We develop a new model for studying the molecular evolution of protein-coding DNA sequences. In contrast to existing models, we incorporate the potential for site-to-site heterogeneity of both synonymous and nonsynonymous substitution rates. We demonstrate that within-gene heterogeneity of synonymous substitution rates appears to be common.

View Article and Find Full Text PDF

We analyze members of the receptor-like kinase (RLK) gene family in Arabidopsis thaliana for positive selection. Likelihood analyses find evidence for positive selection in 12 of the 52 RLK family sequences groups. These 12 groups represent 97 of the 403 sequences analyzed.

View Article and Find Full Text PDF

Summary: PowerMarker delivers a data-driven, integrated analysis environment (IAE) for genetic data. The IAE integrates data management, analysis and visualization in a user-friendly graphical user interface. It accelerates the analysis lifecycle and enables users to maintain data integrity throughout the process.

View Article and Find Full Text PDF

Likelihood applications have become a central approach for molecular evolutionary analyses since the first computationally tractable treatment two decades ago. Although Felsenstein's original pruning algorithm makes likelihood calculations feasible, it is usually possible to take advantage of repetitive structure present in the data to arrive at even greater computational reductions. In particular, alignment columns with certain similarities have components of the likelihood calculation that are identical and need not be recomputed if columns are evaluated in an optimal order.

View Article and Find Full Text PDF

Unlabelled: The HyPhypackage is designed to provide a flexible and unified platform for carrying out likelihood-based analyses on multiple alignments of molecular sequence data, with the emphasis on studies of rates and patterns of sequence evolution.

Availability: http://www.hyphy.

View Article and Find Full Text PDF

The accumulation of divergent histone H4 amino acid sequences within and between ciliate lineages challenges traditional views of the evolution of this essential eukaryotic protein. We analyzed histone H4 sequences from 13 species of ciliates and compared these data with sequences from well-sampled eukaryotic clades. Ciliate histone H4s differ from one another at as many as 46% of their amino acids, in contrast with the highly conserved character of this protein in most other eukaryotes.

View Article and Find Full Text PDF

Ciliates provide a powerful system to analyze the evolution of duplicated alpha-tubulin genes in the context of single-celled organisms. Genealogical analyses of ciliate alpha-tubulin sequences reveal five apparently recent gene duplications. Comparisons of paralogs in different ciliates implicate differing patterns of substitutions (e.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: