Publications by authors named "Spencer Shorte"

Histological analysis of skeletal muscle is of major interest for understanding its behavior in different pathophysiological conditions, such as the response to different environments or myopathies. In this context, many software programs have been developed to perform automated high-content analysis. We created MuscleJ, a macro that runs in ImageJ/Fiji on batches of images.

View Article and Find Full Text PDF

Modern drug discovery approaches often use high-content imaging to systematically study the effect on cells of large libraries of chemical compounds. By automatically screening thousands or millions of images to identify specific drug-induced cellular phenotypes, for example, altered cellular morphology, these approaches can reveal 'hit' compounds offering therapeutic promise. In the past few years, artificial intelligence (AI) methods based on deep learning (DL) [a family of machine learning (ML) techniques] have disrupted virtually all image analysis tasks, from image classification to segmentation.

View Article and Find Full Text PDF

The COVID-19 pandemic highlights the importance of efficient and safe vaccine development. Vaccine adjuvants are essential to boost and tailor the immune response to the corresponding pathogen. To allow for an educated selection, we assessed the effect of different adjuvants on human monocyte-derived dendritic cells (DCs) and their ability to polarize innate and adaptive immune responses.

View Article and Find Full Text PDF

Marine dissolved organic matter (DOM) comprises a vast and unexplored molecular space. Most of it resided in the oceans for thousands of years. It is among the most diverse molecular mixtures known, consisting of millions of individual compounds.

View Article and Find Full Text PDF

Background: Quantitative imaging of epithelial tissues requires bioimage analysis tools that are widely applicable and accurate. In the case of imaging 3D tissues, a common preprocessing step consists of projecting the acquired 3D volume on a 2D plane mapping the tissue surface. While segmenting the tissue cells is amenable on 2D projections, it is still very difficult and cumbersome in 3D.

View Article and Find Full Text PDF

The () project is a clinical study centered on the detailed characterization of the baseline and induced immune responses in blood samples from 1,000 healthy donors. Analyses of these samples has lay ground for seminal studies on the genetic and environmental determinants of immunologic variance in a healthy cohort population. In the current study we developed methods enabling standardized quantification of MI-cohort-derived primary fibroblasts responses.

View Article and Find Full Text PDF

Pathogenic enterobacteria face various oxygen (O) levels during intestinal colonization from the O-deprived lumen to oxygenated tissues. Using Shigella flexneri as a model, we have previously demonstrated that epithelium invasion is promoted by O in a type III secretion system-dependent manner. However, subsequent pathogen adaptation to tissue oxygenation modulation remained unknown.

View Article and Find Full Text PDF

Cell-based phenotypic screening has proven to be valuable, notably in recapitulating relevant biological conditions, for example, the host cell/pathogen niche. However, the corresponding methodological complexity is not readily compatible with high-throughput pipelines, and fails to inform either molecular target or mechanism of action, which frustrates conventional drug-discovery roadmaps. We review the state-of-the-art and emerging technologies that suggest new strategies for harnessing value from the complexity of phenotypic screening and augmenting powerful utility for translational drug discovery.

View Article and Find Full Text PDF

Early detection of tumors is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. optical bioluminescence imaging has been widely used in the field of preclinical oncology to visualize tumors and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, the light emitted by the majority of commonly used luciferases is usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal, and calling for optimized optical imaging methodologies.

View Article and Find Full Text PDF

The shape of cellular membranes is highly regulated by a set of conserved mechanisms that can be manipulated by bacterial pathogens to infect cells. Remodeling of the plasma membrane of endothelial cells by the bacterium Neisseria meningitidis is thought to be essential during the blood phase of meningococcal infection, but the underlying mechanisms are unclear. Here we show that plasma membrane remodeling occurs independently of F-actin, along meningococcal type IV pili fibers, by a physical mechanism that we term 'one-dimensional' membrane wetting.

View Article and Find Full Text PDF

Background: Skeletal muscle has the capacity to adapt to environmental changes and regenerate upon injury. To study these processes, most experimental methods use quantification of parameters obtained from images of immunostained skeletal muscle. Muscle cross-sectional area, fiber typing, localization of nuclei within the muscle fiber, the number of vessels, and fiber-associated stem cells are used to assess muscle physiology.

View Article and Find Full Text PDF

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis.

View Article and Find Full Text PDF

The cytoskeleton, composed of actin microfilaments, microtubules, and intermediate filaments (IF), plays a key role in the control of cell shape, polarity, and motility. The organization of the actin and microtubule networks has been extensively studied but that of IFs is not yet fully characterized. IFs have an average diameter of 10 nm and form a network extending throughout the cell cytoplasm.

View Article and Find Full Text PDF

We consider in review current state-of-the-art fluorescence microscopy for investigating the host-pathogen interface. Our perspective is honed from years with literally thousands of microbiologists using the variety of imaging technologies available within our dedicated BSL2/BSL3 optical imaging research service facilities at the Institut Pasteur Paris founded from scratch in 2001. During fifteen years learning from the success and failures of introducing different fluorescence imaging technologies, methods, and technical development strategies we provide here a synopsis review of our experience to date and a synthesis of how we see the future in perspective for fluorescence imaging at the host-pathogen interface.

View Article and Find Full Text PDF

Listeria monocytogenes is a bacterial pathogen which invades and multiplies within non-professional phagocytes. Signaling cascades involved in cellular entry have been extensively analyzed, but the events leading to vacuolar escape remain less clear. In this chapter, we detail a microscopy FRET-based assay which allows quantitatively measuring L.

View Article and Find Full Text PDF

The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell- and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies.

View Article and Find Full Text PDF

We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants.

View Article and Find Full Text PDF

Background: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology and their function in response to aggression.

View Article and Find Full Text PDF

Listeria monocytogenes is a Gram-positive bacterium and a facultative intracellular pathogen that invades mammalian cells, disrupts its internalization vacuole, and proliferates in the host cell cytoplasm. Here, we describe a novel image-based microscopy assay that allows discrimination between cellular entry and vacuolar escape, enabling high-content screening to identify factors specifically involved in these two steps. We first generated L.

View Article and Find Full Text PDF

Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S.

View Article and Find Full Text PDF

After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE.

View Article and Find Full Text PDF

We present a new technology for super-resolution fluorescence imaging, based on conical diffraction. Conical diffraction is a linear, singular phenomenon, taking place when a laser beam is diffracted through a biaxial crystal. We use conical diffraction in a thin biaxial crystal to generate illumination patterns that are more compact than the classical Gaussian beam, and use them to generate a super-resolution imaging modality.

View Article and Find Full Text PDF

Shigella enters epithlial cells via internalization into a vacuole. Subsequent vacuolar membrane rupture allows bacterial escape into the cytosol for replication and cell-to-cell spread. Bacterial effectors such as IpgD, a PI(4,5)P2 phosphatase that generates PI(5)P and alters host actin, facilitate this internalization.

View Article and Find Full Text PDF

Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0a2fkq8a2fpd23d869f5j3ka7a6l6gq7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once