Publications by authors named "Spencer Holt"

Forced migration is one of the most pressing crises of our lifetime. Of the millions forced to migrate, many come to know the brutality of state-managed migration that habitually denies asylum seekers and places substantive restrictions on refugees who have been resettled. Sociologists of sport and leisure have examined the sporting experiences of refugees through an intersectional lens, foregrounding how displacement and resettlement are differently lived and negotiated across overlapping power structures and markers of gender, sexuality, ethnicity, religion, and legal status.

View Article and Find Full Text PDF

Background And Purpose: Chiropractic professional identity (CPI) encompasses diverse values, beliefs, experiences, and philosophies about one's work, specific to the chiropractic profession. Yet currently, there is no instrument available to measure CPI. This study aimed to develop and validate the Chiropractic Professional Identity Embodiment Scale (CPIES).

View Article and Find Full Text PDF

Traumatic optic neuropathy (TON) is a devastating condition that can occur after blunt or penetrating trauma to the head, leading to visual impairment or blindness. Despite these debilitating effects, no clinically available therapeutic targets neuroprotection or promotes axon regeneration in this or any optic neuropathy. Limited data in large-animal models are a major obstacle to advancing treatments toward clinical therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • Autism shows a wide variation in physical and brain structure characteristics, with previous brain imaging studies on certain brain regions in autism yielding conflicting results.
  • Researchers analyzed a large dataset of MRI scans to explore differences in the thalamus, globus pallidus, and striatum related to factors like sex, age, and IQ.
  • They found no overall size differences in these brain regions but identified localized shape variations that change with age, suggesting that the neurodevelopment of these areas is atypical in autism and varies significantly throughout a person's life.
View Article and Find Full Text PDF

Background: The concept of professional identity within chiropractic is often discussed and debated, however in the field to date, there is no formal definition of chiropractic professional identity (CPI). This article aims to create a coherent definition of CPI and to formalise the conceptual domains that may encompass it.

Methods: Using the Walker and Avant (2005) process, a concept analysis methodology was employed to clarify the diffuse concept of CPI.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates compact binary coalescences with at least one component mass between 0.2 and 1.0 solar masses using data from Advanced LIGO and Advanced Virgo detectors over six months in 2019, but they found no significant gravitational wave candidates.
  • The analysis leads to an upper limit on the merger rate of subsolar binaries ranging from 220 to 24,200 Gpc⁻³ yr⁻¹, based on the detected signals’ false alarm rate.
  • The researchers use these limits to set new constraints on two models for subsolar-mass compact objects: primordial black holes (suggesting they make up less than 6% of dark matter) and
View Article and Find Full Text PDF

Purpose: To address the role of consolidation treatment for newly diagnosed, transplant eligible patients with multiple myeloma in a controlled clinical trial.

Patients And Methods: The EMN02/HOVON95 trial compared consolidation treatment with two cycles of bortezomib, lenalidomide, and dexamethasone (VRD) or no consolidation after induction and intensification therapy, followed by continuous lenalidomide maintenance. Primary study end point was progression-free survival (PFS).

View Article and Find Full Text PDF

We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 dataset. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks, and, for the first time, kink-kink collisions. A template-based search for short-duration transient signals does not yield a detection.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is associated with atypical brain development. However, the phenotype of regionally specific increased cortical thickness observed in ASD may be driven by several independent biological processes that influence the gray/white matter boundary, such as synaptic pruning, myelination, or atypical migration. Here, we propose to use the boundary sharpness coefficient (BSC), a proxy for alterations in microstructure at the cortical gray/white matter boundary, to investigate brain differences in individuals with ASD, including factors that may influence ASD-related heterogeneity (age, sex, and intelligence quotient).

View Article and Find Full Text PDF

We present our current best estimate of the plausible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next several years, with the intention of providing information to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals for the third (O3), fourth (O4) and fifth observing (O5) runs, including the planned upgrades of the Advanced LIGO and Advanced Virgo detectors. We study the capability of the network to determine the sky location of the source for gravitational-wave signals from the inspiral of binary systems of compact objects, that is binary neutron star, neutron star-black hole, and binary black hole systems.

View Article and Find Full Text PDF
Article Synopsis
  • On May 21, 2019, Advanced LIGO and Virgo detected a significant gravitational-wave signal known as GW190521, indicating a high probability event with a low chance of false alarms.
  • The signal suggests it resulted from the merger of two black holes, one around 85 solar masses and the other about 66 solar masses, with the primary black hole likely being an intermediate mass black hole.
  • The source of the merger is estimated to be about 5.3 billion light-years away, and the rate of similar black hole mergers is estimated to be about 0.13 mergers per billion cubic parsecs per year.
View Article and Find Full Text PDF
Article Synopsis
  • A clinical study was conducted to evaluate the effectiveness of autologous hematopoietic stem-cell transplantation (HSCT) versus the combination therapy of bortezomib-melphalan-prednisone (VMP) for newly diagnosed multiple myeloma patients.
  • The research included untreated patients aged 18-65 with symptomatic multiple myeloma, enrolling at 172 centers within the European Myeloma Network and randomizing them to different treatment groups.
  • After initial treatment with either VMP or HSCT, patients were randomized again to receive consolidation therapy with bortezomib-lenalidomide-dexamethasone or no consolidation, with the aim of assessing the overall benefits and outcomes of these treatment
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the existence of subsolar mass ultracompact objects by analyzing data from Advanced LIGO's second observing run and includes the impact of spin on gravitational waves.
  • No suitable gravitational-wave candidates were found for binaries with at least one component between 0.2 and 1.0 solar masses, leading to significant constraints on their binary merger rates.
  • The findings suggest that such ultracompact objects likely do not form through conventional stellar evolution, and they outline how these constraints on merger rates can be applied to different black hole population models that predict subsolar mass binaries.
View Article and Find Full Text PDF

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in the presence of matter. In this Letter, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime.

View Article and Find Full Text PDF

Significant heterogeneity across aetiologies, neurobiology and clinical phenotypes have been observed in individuals with autism spectrum disorder (ASD). Neuroimaging-based neuroanatomical studies of ASD have often reported inconsistent findings which may, in part, be attributable to an insufficient understanding of the relationship between factors influencing clinical heterogeneity and their relationship to brain anatomy. To this end, we performed a large-scale examination of cortical morphometry in ASD, with a specific focus on the impact of three potential sources of heterogeneity: sex, age and full-scale intelligence (FIQ).

View Article and Find Full Text PDF

Background: Autism is a highly varied and heritable neurodevelopmental condition, and common variants explain approximately 50% of the genetic variance of autism. One of the genes implicated in autism is the oxytocin receptor (). The current study combined genetic and brain imaging (fMRI) data to examine the moderating effect of genotype on the association between diagnosis and brain activity in response to a test of cognitive empathy.

View Article and Find Full Text PDF

We analyze the impact of a proposed tidal instability coupling p modes and g modes within neutron stars on GW170817. This nonresonant instability transfers energy from the orbit of the binary to internal modes of the stars, accelerating the gravitational-wave driven inspiral. We model the impact of this instability on the phasing of the gravitational wave signal using three parameters per star: an overall amplitude, a saturation frequency, and a spectral index.

View Article and Find Full Text PDF

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2  M_{⊙}-1.0  M_{⊙} using data taken between September 12, 2015 and January 19, 2016.

View Article and Find Full Text PDF

On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii.

View Article and Find Full Text PDF

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources.

View Article and Find Full Text PDF

We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy.

View Article and Find Full Text PDF

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations.

View Article and Find Full Text PDF
Article Synopsis
  • * The analysis focused on detecting continuous signals from pulsars and did not depend on any specific gravity theory.
  • * After examining data from advanced LIGO, we found no signs of these gravitational waves, but established upper limits for scalar and vector strains that are similar to existing limits for tensor strain.
View Article and Find Full Text PDF

On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.

View Article and Find Full Text PDF

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.

View Article and Find Full Text PDF