Publications by authors named "Spencer Haws"

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion.

View Article and Find Full Text PDF

Dietary protein and essential amino acid (EAA) restriction promotes favorable metabolic reprogramming, ultimately resulting in improvements to both health and lifespan. However, as individual EAAs have distinct catabolites and engage diverse downstream signaling pathways, it remains unclear to what extent shared or AA-specific molecular mechanisms promote diet-associated phenotypes. Here, we investigated the physiological and molecular effects of restricting either dietary methionine, leucine, or isoleucine (Met-R, Leu-R, and Ile-R) for 3 weeks in C57BL/6J male mice.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) have transcriptionally permissive chromatin enriched for gene activation-associated histone modifications. A striking exception is DOT1L-mediated H3K79 dimethylation (H3K79me2) that is considered a positive regulator of transcription. We find that ESCs are depleted for H3K79me2 at shared locations of enrichment with somatic cells, which are highly and ubiquitously expressed housekeeping genes, and have lower RNA polymerase II (RNAPII) at the transcription start site (TSS) despite greater nascent transcription.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) is the methyl donor for site-specific methylation reactions on histone proteins, imparting key epigenetic information. During SAM-depleted conditions that can arise from dietary methionine restriction, lysine di- and tri-methylation are reduced while sites such as Histone-3 lysine-9 (H3K9) are actively maintained, allowing cells to restore higher-state methylation upon metabolic recovery. Here, we investigated if the intrinsic catalytic properties of H3K9 histone methyltransferases (HMTs) contribute to this epigenetic persistence.

View Article and Find Full Text PDF

Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin.

View Article and Find Full Text PDF

Calorie restriction (CR) promotes healthy ageing in diverse species. Recently, it has been shown that fasting for a portion of each day has metabolic benefits and promotes lifespan. These findings complicate the interpretation of rodent CR studies, in which animals typically eat only once per day and rapidly consume their food, which collaterally imposes fasting.

View Article and Find Full Text PDF

Many chromatin-modifying enzymes require metabolic cofactors to support their catalytic activities, providing a direct path for fluctuations in metabolite availability to regulate the epigenome. Over the past decade, our knowledge of this link has grown significantly. What began with studies showing that cofactor availability drives global abundances of chromatin modifications has transitioned to discoveries highlighting metabolic enzymes as loci-specific regulators of gene expression.

View Article and Find Full Text PDF

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation.

View Article and Find Full Text PDF

Advances in mass spectrometry (MS) have revolutionized the ability to measure global changes in histone post-translational modifications (PTMs). The method routinely quantifies over 60 modification states in a single sample, far exceeding the capabilities of traditional western blotting. Thus, MS-based histone analysis has become an increasingly popular tool for understanding how genetic and environmental factors influence epigenetic states.

View Article and Find Full Text PDF

Deleterious changes in energy metabolism have been linked to aging and disease vulnerability, while activation of mitochondrial pathways has been linked to delayed aging by caloric restriction (CR). The basis for these associations is poorly understood, and the scope of impact of mitochondrial activation on cellular function has yet to be defined. Here, we show that mitochondrial regulator PGC-1a is induced by CR in multiple tissues, and at the cellular level, CR-like activation of PGC-1a impacts a network that integrates mitochondrial status with metabolism and growth parameters.

View Article and Find Full Text PDF

Biochemical, proteomic, and epigenetic studies of chromatin rely on the ability to efficiently isolate native nucleosomes in high yield and purity. However, isolation of native chromatin suitable for many downstream experiments remains a challenging task. This is especially true for the budding yeast , which continues to serve as an important model organism for the study of chromatin structure and function.

View Article and Find Full Text PDF

The Zap1 transcription factor of is a key regulator in the genomic responses to zinc deficiency. Among the genes regulated by Zap1 during zinc deficiency is the autophagy-related gene Here, we report that Atg41 is required for growth in zinc-deficient conditions, but not when zinc is abundant or when other metals are limiting. Consistent with a role for Atg41 in macroautophagy, we show that nutritional zinc deficiency induces autophagy and that mutation of diminishes that response.

View Article and Find Full Text PDF

Maintaining zinc homeostasis is an important property of all organisms. In the yeast Saccharomyces cerevisiae, the Zap1 transcriptional activator is a central player in this process. In response to zinc deficiency, Zap1 activates transcription of many genes and consequently increases accumulation of their encoded proteins.

View Article and Find Full Text PDF