We study the driven translocation of a semi-flexible polymer through a nanopore by means of a modified version of the iso-flux tension propagation theory, and extensive molecular dynamics (MD) simulations. We show that in contrast to fully flexible chains, for semi-flexible polymers with a finite persistence length [Formula: see text] the trans side friction must be explicitly taken into account to properly describe the translocation process. In addition, the scaling of the end-to-end distance R as a function of the chain length N must be known.
View Article and Find Full Text PDFNanopores are powerful single-molecule sensors with nanometer scale dimensions suitable for detection, quantification, and characterization of nucleic acids and proteins. Beyond sequencing applications, both biological and solid-state nanopores hold great promise as tools for studying the biophysical properties of RNA. In this review, we highlight selected landmark nanopore studies with regards to RNA sequencing, microRNA detection, RNA/ligand interactions, and RNA structural/conformational analysis.
View Article and Find Full Text PDFSynthetic nucleic acids offer rich potential to understand and engineer new cellular functions, yet an unresolved limitation in their production and usage is deleterious products, which restrict design complexity and add cost. Herein, we employ a solid-state nanopore to differentiate molecules of a gene synthesis reaction into categories of correct and incorrect assemblies. This new method offers a solution that provides information on gene synthesis reactions in near-real time with higher complexity and lower costs.
View Article and Find Full Text PDFOxidation of a DNA thymine to 5-hydroxymethyluracil is one of several recently discovered epigenetic modifications. Here, we report the results of nanopore translocation experiments and molecular dynamics simulations that provide insight into the impact of this modification on the structure and dynamics of DNA. When transported through ultrathin solid-state nanopores, short DNA fragments containing thymine modifications were found to exhibit distinct, reproducible features in their transport characteristics that differentiate them from unmodified molecules.
View Article and Find Full Text PDFNanotechnology
February 2015
Nanopores are being hailed as a potential next-generation DNA sequencer that could provide cheap, high-throughput DNA analysis. In this review we present a detailed summary of the various sensing techniques being investigated for use in DNA sequencing and mapping applications. A crucial impasse to the success of nanopores as a reliable DNA analysis tool is the fast and stochastic nature of DNA translocation.
View Article and Find Full Text PDFNucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions.
View Article and Find Full Text PDFVoltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent.
View Article and Find Full Text PDFIn recent years, nanopores have emerged as exceptionally promising single-molecule sensors due to their ability to detect biomolecules at subfemtomole levels in a label-free manner. Development of a high-throughput nanopore-based biosensor requires multiplexing of nanopore measurements. Electrical detection, however, poses a challenge, as each nanopore circuit must be electrically independent, which requires complex nanofluidics and embedded electrodes.
View Article and Find Full Text PDFHerein we report a novel approach for fast, label-free probing of DNA-histone interactions in individual nucleosomes. We use solid-state nanopores to unravel individual DNA/histone complexes for the first time and find that the unraveling time depends on the applied electrophoretic force, and our results are in line with previous studies that employ optical tweezers. Our approach for studying nucleosomal interactions can greatly accelerate the understanding of fundamental mechanisms by which transcription, replication, and repair processes in a cell are modulated through DNA-histone interactions, as well as in diagnosis of diseases with abnormal patterns of DNA and histone modifications.
View Article and Find Full Text PDF