Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.
View Article and Find Full Text PDFCalorie restriction (CR) extends lifespan and prevents several aging related diseases. During short-term restriction, we previously showed that lean tissues generally decrease in size, but the alimentary tract (especially the stomach) grows. To illuminate pathway alterations in these contrasting tissues we compared gene expression profiles (bulk RNAseq) of the skeletal muscle and stomach, in the same male C57BL/6J mice exposed to 3 months of graded CR (0-40%).
View Article and Find Full Text PDFBackground: Previously, we found that healthy underweight (HU) subjects, with BMI < 18.5, eat about 12% less food (by calories) each day. It is presently unclear whether this lower intake is associated with them making food choices that provide high satiation and satiety.
View Article and Find Full Text PDFScope: The study assesses the metabolic impact of dietary whey proteins across generations.
Method And Results: Virgin females are fed 20% energy whey proteins with 70% energy carbohydrates, which reduces body weight gain and visceral adipose compared to controls fed dietary casein. In contrast, the males are unresponsive.
The disposable soma theory (DST) posits that organisms age and die because of a direct trade-off in resource allocation between reproduction and somatic maintenance. DST predicts that investments in reproduction accentuate somatic damage which increase senescence and shortens lifespan. Here, we directly tested DST predictions in breeding and nonbreeding female C57BL/6J mice.
View Article and Find Full Text PDFGolden Syrian hamsters (Mesocricetus auratus) are a well-established animal model for human infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their susceptibility to SARS-CoV-2 infection, robust virus replication and pathological manifestations similar to human COVID-19 pneumonia. To investigate the physiological changes upon infection in this animal model, we explored the alterations in daily energy expenditure (DEE), water turnover, body mass, body temperature, and locomotor activity in non-infected and SARS-CoV-2 infected Golden Syrian hamsters for four days post SARS-CoV-2. DEE was measured using the doubly labelled water method, which allows for the accurate estimation of carbon dioxide production and, consequently, energy expenditure in animals.
View Article and Find Full Text PDFApplication of the physical laws of energy and mass conservation at the whole-body level is not necessarily informative about causal mechanisms of weight gain and the development of obesity. The energy balance model (EBM) and the carbohydrate-insulin model (CIM) are two plausible theories, among several others, attempting to explain why obesity develops within an overall common physiological framework of regulation of human energy metabolism. These models have been used to explain the pathogenesis of obesity in individuals as well as the dramatic increases in the prevalence of obesity worldwide over the past half century.
View Article and Find Full Text PDFFemale soccer players have been identified as presenting with low energy availability (LEA), though the prevalence of LEA may be overestimated given inaccuracies associated with self-reporting dietary intakes. Accordingly, we aimed to quantify total daily energy expenditure (TDEE) via the doubly labelled water (DLW) method, energy intake (EI) and energy availability (EA). Adolescent female soccer players (n = 45; 16 ± 1 years) completed a 9-10 day 'training camp' representing their national team.
View Article and Find Full Text PDFRationale: The precision of the doubly labeled water (DLW) method is determined by the precision and accuracy of the isotopic measurements. Quality control (QC) procedures to mitigate sample variability require additional measurements if sample duplicates differ more than a factor of instrument precision. We explored the effect of widening QC ranges on total daily energy expenditure (TDEE) determined using the two-point sampling method.
View Article and Find Full Text PDFBMJ Support Palliat Care
August 2024
Variations in physical activity energy expenditure can make accurate prediction of total energy expenditure (TEE) challenging. The purpose of the present study was to determine the accuracy of available equations to predict TEE in individuals varying in physical activity (PA) levels. TEE was measured by DLW in 56 adults varying in PA levels which were monitored by accelerometry.
View Article and Find Full Text PDFThe purpose of this study was to quantify the total energy expenditure (TEE) of international female rugby union players. Fifteen players were assessed over 14 days throughout an international multi-game tournament, which represented two consecutive one-match microcycles. Resting metabolic rate (RMR) and TEE were assessed by indirect calorimetry and doubly labelled water, respectively.
View Article and Find Full Text PDFCaloric restriction (CR) results in reduced energy and protein intake, raising questions about protein restriction's contribution to CR longevity benefits. We kept ad libitum (AL)-fed male C57BL/6J mice at 27°C (AL27) and pair-fed (PF) mice at 22°C (22(PF27)). The 22(PF27) group was fed to match AL27 while restricted for calories due to cold-induced metabolism.
View Article and Find Full Text PDFObjectives: We aimed to validate dietary assessment methods against the gold standard, doubly labeled water (DLW), for estimating total energy intake (TEI).
Methods: PubMed, Scopus, Web of Science, and Google Scholar databases were searched until May 2023. Inclusion criteria encompassed studies involving participants aged 1-18 years, employing dietary assessment methods like food records, dietary histories, food frequency questionnaire (FFQ), or 24-h recalls estimating TEI alongside DLW to measure total energy expenditure (TEE).
Dietary protein modulates food intake (FI) via unclear mechanism(s). One possibility is that higher protein leads to greater post-ingestive heat production (Specific dynamic action: SDA) leading to earlier meal termination (increased satiation), and inhibition of further intake (increased satiety). The influence of dietary protein on feeding behaviour in C57BL/6J mice was tested using an automated FI monitoring system (BioDAQ), simultaneous to body temperature (T).
View Article and Find Full Text PDF