Laser-induced graphene (LIG) has become a highly promising material for flexible functional devices due to its robust mechanical stability, excellent electrical properties, and ease of fabrication. Most research has been focused on LIG production on rigid or flexible substrates, with an obvious gap in laser induction of graphene on elastic, stretchable substrates, which limits the scope of application of LIG in flexible electronics. We demonstrate laser induction of graphene on a novel, cross-linked poly(dimethylsiloxane) (PDMS)/Triton X-100 composite substrates.
View Article and Find Full Text PDFLaser-induced graphene (LIG) possesses desirable properties for numerous applications. However, LIG formation on biocompatible substrates is needed to further augment the integration of LIG-based technologies into nanobiotechnology. Here, LIG formation on cross-linked sodium alginate is reported.
View Article and Find Full Text PDFMicrophones exploit the motion of suspended membranes to detect sound waves. Since the microphone performance can be improved by reducing the thickness and mass of its sensing membrane, graphene-based microphones are expected to outperform state-of-the-art microelectromechanical (MEMS) microphones and allow further miniaturization of the device. Here, we present a laser vibrometry study of the acoustic response of suspended multilayer graphene membranes for microphone applications.
View Article and Find Full Text PDFAirborne acoustic surveillance would enable and ease several applications, including security surveillance, urban and industrial noise monitoring, rescue missions, and wildlife monitoring. Airborne surveillance with an acoustic camera mounted on an airship would provide the deployment flexibility and utility required by these applications. Nevertheless, and problematically for these applications, there is not a single acoustic camera mounted on an airship yet.
View Article and Find Full Text PDFThe HeartPy Python toolkit for analysis of noisy signals from heart rate measurements is an excellent tool to use in conjunction with novel wearable sensors. Nevertheless, most of the work to date has focused on applying the toolkit to data measured with commercially available sensors. We demonstrate the application of the HeartPy functions to data obtained with a novel graphene-based heartbeat sensor.
View Article and Find Full Text PDFElectrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir-Blodgett assembly.
View Article and Find Full Text PDFFunctionalization of electrodes is a wide-used strategy in various applications ranging from single-molecule sensing and protein sequencing, to ion trapping, to desalination. We demonstrate, employing non-equilibrium Green's function formalism combined with density functional theory, that single-species (N, H, S, Cl, F) termination of graphene nanogap electrodes results in a strong in-gap electrostatic field, induced by species-dependent dipoles formed at the electrode ends. Consequently, the field increases or decreases electronic transport through a molecule (benzene) placed in the nanogap by shifting molecular levels by almost 2 eV in respect to the electrode Fermi level via a field effect akin to the one used for field-effect transistors.
View Article and Find Full Text PDFHumidity sensing is important to a variety of technologies and industries, ranging from environmental and industrial monitoring to medical applications. Although humidity sensors abound, few available solutions are thin, transparent, compatible with large-area sensor production and flexible, and almost none are fast enough to perform human respiration monitoring through breath detection or real-time finger proximity monitoring via skin humidity sensing. This work describes chemiresistive graphene-based humidity sensors produced in few steps with facile liquid phase exfoliation followed by Langmuir-Blodgett assembly that enables active areas of practically any size.
View Article and Find Full Text PDFNano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum.
View Article and Find Full Text PDFWe study the dynamics of a laser-trapped nanoparticle in high vacuum. Using parametric coupling to an external excitation source, the linewidth of the nanoparticle's oscillation can be reduced by three orders of magnitude. We show that the oscillation of the nanoparticle and the excitation source are synchronized, exhibiting a well-defined phase relationship.
View Article and Find Full Text PDFThe ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene.
View Article and Find Full Text PDFWe map the complex electric fields associated with the scattering of surface plasmon polaritons by single subwavelength holes of different sizes in thick gold films. We identify and quantify the different modes associated with this event, including a radial surface wave with an angularly isotropic amplitude. This wave is shown to arise from the out-of-plane electric dipole induced in the hole, and we quantify the corresponding polarizability, which is in excellent agreement with electromagnetic theory.
View Article and Find Full Text PDFWe experimentally study the fields close to an interface between two photonic crystal waveguides that have different dispersion properties. After the transition from a waveguide in which the group velocity of light is v(g) ~ c/10 to a waveguide in which it is v(g) ~ c/100, we observe a gradual increase in the field intensity and the lateral spreading of the mode. We attribute this evolution to the existence of a weakly evanescent mode that exponentially decays away from the interface.
View Article and Find Full Text PDFSlow light devices such as photonic crystal waveguides (PhCW) and coupled resonator optical waveguides (CROW) have much promise for optical signal processing applications and a number of successful demonstrations underpinning this promise have already been made. Most of these applications are limited by propagation losses, especially for higher group indices. These losses are caused by technological imperfections ("extrinsic loss") that cause scattering of light from the waveguide mode.
View Article and Find Full Text PDFWe characterize bending losses of curved plasmonic nanowire waveguides for radii of curvature ranging from 1 to 12 microm and widths down to 40 nm. We use near-field measurements to separate bending losses from propagation losses. The attenuation due to bending loss is found to be as low as 0.
View Article and Find Full Text PDFWe report statistical fluctuations for the transmissions of a series of photonic-crystal waveguides (PhCWs) that are supposedly identical and that only differ because of statistical structural fabrication-induced imperfections. For practical PhCW lengths offering tolerable -3dB attenuation with moderate group indices (n(g) approximately 60), the transmission spectra contains very narrow peaks (Q approximately 20,000) that vary from one waveguide to another. The physical origin of the peaks is explained by calculating the actual electromagnetic-field pattern inside the waveguide.
View Article and Find Full Text PDFArrangements of subwavelength sized holes in metal films are often used to launch surface plasmon polaritons (SPPs) onto metal-dielectric interfaces. They are readily fabricated and can also be used to generate a variety of near- and far-field intensity patterns. We use a short chain of equally spaced subwavelength sized holes to launch SPPs onto a gold-air interface in complex patterns of hotspots.
View Article and Find Full Text PDFWe show with both experiment and calculation that highly confined surface plasmon polaritons can be efficiently excited on metallic nanowires through the process of mode transformation. One specific mode in a metallic waveguide is identified that adiabatically transforms to the confined nanowire mode as the waveguide width is reduced. Phase- and polarization-sensitive near-field investigation reveals the characteristic antisymmetric polarization nature of the mode and explains the coupling mechanism.
View Article and Find Full Text PDF