Publications by authors named "Sparreboom W"

The large majority of patients with HER2-positive metastatic breast cancer (MBC) will eventually develop resistance to anti-HER2 therapy and die of this disease. Despite, relatively high levels of stromal tumor infiltrating lymphocytes (sTILs), PD1-blockade has only shown modest responses. Monalizumab targets the inhibitory immune checkpoint NKG2A, thereby unleashing NK- and CD8 T cells.

View Article and Find Full Text PDF

Information on treatment patterns for ovarian cancer (OC) is limited. The aim of this study was to describe current patterns of chemotherapy and other systemic treatments for OC in the Netherlands and evaluate survival outcomes following subsequent lines of treatment. Data from the Eindhoven Cancer Registry, including on newly diagnosed cancer patients, were linked to the PHARMO Database Network, including information on in- and out-patient drug use.

View Article and Find Full Text PDF

An increasing number of microfluidic systems operate at flow rates below 1 μl/min. Applications include (implanted) micropumps for drug delivery, liquid chromatography, and microreactors. For the applications where the absolute accuracy is important, a proper calibration is required.

View Article and Find Full Text PDF

Microflow and nanoflow rate calibrations are important in several applications such as liquid chromatography, (scaled-down) process technology, and special health-care applications. However, traceability in the microflow and nanoflow range does not go below 16 μl/min in Europe. Furthermore, the European metrology organization EURAMET did not yet validate this traceability by means of an intercomparison between different National Metrology Institutes (NMIs).

View Article and Find Full Text PDF

Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva, sample enrichment and amplification is typically required before detection. We present a rapid microfluidic solid phase extraction (μSPE) system for the capture and elution of low concentrations of hm-DNA (≤1 ng ml(-1)), based on a protein-DNA capture surface, into small volumes using a passive microfluidic lab-on-a-chip platform.

View Article and Find Full Text PDF

The evolution from microfluidic to nanofluidic systems has been accompanied by the emergence of new fluid phenomena and the potential for new nanofluidic devices. This review provides an introduction to the theory of nanofluidic transport, focusing on the various forces that influence the movement of both solvents and solutes through nanochannels, and reviews the applications of nanofluidic devices in separation science and energy conversion.

View Article and Find Full Text PDF

We present a rapid etch method to surface-micromachine nanochannels with integrated noble metal electrodes using a single metal sacrificial layer. The method is based on the galvanic coupling of a chromium sacrificial layer with gold electrodes, which results in a 10-fold increase in etch rate with respect to conventional single metal etching. The etch process is investigated and characterized by optical and electrochemical measurements, leading to a theoretical explanation of the observed etch rate based on mass transport.

View Article and Find Full Text PDF

The electrochemical behavior of Si--C linked organic monolayers is studied in electrolyte-insulator-Si devices, under conditions normally encountered in potentiometric biosensors, to gain fundamental knowledge on the behavior of such Si electrodes under practical conditions. This is done via titration experiments, Mott-Schottky data analysis, and data fitting using a site-binding model. The results are compared with those of native SiO(2) layers and native SiO(2) layers modified with hexamethyldisilazane.

View Article and Find Full Text PDF

The optimization process of a planar interdigitated conductivity detector for measuring very low electrolyte concentrations for use in a lab-on-chip gas detection system is described. An electrical equivalent of the sensor is given, which includes the double layer capacitance dependency on the electrolyte concentration, resulting in a better description of the impedance of the sensor. The cell constant of the sensor is minimized to reduce the cell resistance in low specific conductivity solutions under the restriction of a small electrode area (> or = 0.

View Article and Find Full Text PDF