Publications by authors named "Spandan Shah"

Natural killer (NK) cells are critical modulators of HIV transmission and disease. Recent evidence suggests a loss of NK cell cytotoxicity during aging, yet analysis of NK cell biology and aging in people with HIV (PWH) is lacking. Herein, we perform comprehensive analyses of people aging with and without HIV to determine age-related NK phenotypic changes.

View Article and Find Full Text PDF

HIV/SIV infections lead to massive loss of mucosal CD4 + T cells and breakdown of the epithelial mucosa resulting in severe microbial dysbiosis and chronic immune activation that ultimately drive disease progression. Moreover, disruption of one of the most understudied mucosal environments, the oral cavity, during HIV-induced immunosuppression results in significant microbial and neoplastic co-morbidities and contributes to and predicts distal disease complications. In this study we evaluated the effects of oral probiotic supplementation (PBX), which can stimulate and augment inflammatory or anti-inflammatory pathways, on early SIV infection of rhesus macaques.

View Article and Find Full Text PDF

Granulocytes mediate broad immunoprotection through phagocytosis, extracellular traps, release of cytotoxic granules, antibody effector functions and recruitment of other immune cells against pathogens. However, descriptions of granulocytes in HIV infection and mucosal tissues are limited. Our goal was to characterize granulocyte subsets in systemic, mucosal and lymphoid tissues during lentiviral infection using the rhesus macaque (RM) model.

View Article and Find Full Text PDF

CD49a tissue resident NK cells have been implicated in memory-like NK cell responses, but while this population is well-characterized in mice and in humans, they are poorly described in non-human primates (NHP) which are particularly critical for modeling human viral infections. Others and we have shown that memory-like NK cells are enriched in the liver and because of the importance of NHP in modeling HIV infection, understanding the immunobiology of CD49a NK cells in SIV-infected rhesus macaques is critical to explore the role of this cell type in retroviral infections. In this study mononuclear cells isolated from livers, spleens, and peripheral whole blood were analyzed in acutely and chronically lentivirus-infected and experimentally-naïve Indian rhesus macaques (RM).

View Article and Find Full Text PDF

Natural killer (NK) cells are the major innate effectors primed to eliminate virus-infected and tumor or neoplastic cells. Recent studies also suggest nuances in phenotypic and functional characteristics among NK cell subsets may further permit execution of regulatory and adaptive roles. Animal models, particularly non-human primate (NHP) models, are critical for characterizing NK cell biology in disease and under homeostatic conditions.

View Article and Find Full Text PDF

NK cells play a critical role in antiviral and antitumor responses. Although current NK cell immune therapies have focused primarily on cancer biology, many of these advances can be readily applied to target HIV/simian immunodeficiency virus (SIV)-infected cells. Promising developments include recent reports that CAR NK cells are capable of targeted responses while producing less off-target and toxic side effects than are associated with CAR T cell therapies.

View Article and Find Full Text PDF

Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools.

View Article and Find Full Text PDF

Despite burgeoning evidence demonstrating the adaptive properties of natural killer (NK) cells, mechanistic data explaining these phenomena are lacking. Following antibody sensitization, NK cells lacking the Fc receptor (FcR) signaling chain (Δg) acquire adaptive features, including robust proliferation, multifunctionality, rapid killing, and mobilization to sites of virus exposure. Using the rhesus macaque model, we demonstrate the systemic distribution of Δg NK cells expressing memory features, including downregulated Helios and Eomes.

View Article and Find Full Text PDF

Natural killer (NK) cells are primary immune effector cells with both innate and potentially adaptive functions against viral infections, but commonly become exhausted or dysfunctional during chronic diseases such as human immunodeficiency virus (HIV). Chimpanzees are the closest genetic relatives of humans and have been previously used in immunology, behavior and disease models. Due to their similarities to humans, a better understanding of chimpanzee immunology, particularly innate immune cells, can lend insight into the evolution of human immunology, as well as response to disease.

View Article and Find Full Text PDF
Article Synopsis
  • A new immune cell type called NKB cells has been identified in primates, showing characteristics of both natural killer and B cells, and could respond to infections.
  • In rhesus macaques and humans, NKB cells were present at similar frequencies, with higher concentrations found in the spleen, exhibiting variable immunoglobulin expression, mainly IgM and IgA.
  • The study suggests that NKB cell frequencies change during SIV infection but remain stable in HIV-infected individuals, highlighting their potential as targets for new therapies or vaccines.
View Article and Find Full Text PDF

Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity.

View Article and Find Full Text PDF

Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H receptor on MB-HSCs to promote their quiescence and self-renewal.

View Article and Find Full Text PDF

The common FcRγ, an immunoreceptor tyrosine-based activation motif (ITAM)- containing adaptor protein, associates with multiple leukocyte receptor complexes and mediates signal transduction through the ITAM in the cytoplasmic domain. The presence of multiple serine and threonine residues within this motif suggests the potential for serine/threonine phosphorylation in modulating signaling events. Single-site mutational analysis of these residues in RBL-2H3 cells indicates that each may contribute to net FcRγ-mediated signaling, and mass spectrometry of WT human FcRγ from receptor-stimulated cells shows consistent preferential phosphorylation of the serine residue at position 51.

View Article and Find Full Text PDF

COP9 plays a role in plant innate immunity. The role of COP9 in mammalian innate immune responses is unknown. Here, we show that the COP9 signalosome subunit 5 (CSN5) is required for activation of proinflammatory kinases p38 and Erk and for down-regulation of the expression of genes regulated by nuclear factor E2-related factor 2.

View Article and Find Full Text PDF

Unlabelled: Chronic inflammation plays a critical role in promoting obesity-related disorders, such as fatty liver disease. The inflammatory cells that mediate these effects remain unknown. This study investigated the accumulation of immature myeloid cells in the liver and their role in liver inflammation.

View Article and Find Full Text PDF

Objective: We sought to determine whether exosome-like vesicles (ELVs) released from adipose tissue play a role in activation of macrophages and subsequent development of insulin resistance in a mouse model.

Research Design And Methods: ELVs released from adipose tissue were purified by sucrose gradient centrifugation and labeled with green fluorescent dye and then intravenously injected into B6 ob/ob mice (obese model) or B6 mice fed a high-fat diet. The effects of injected ELVs on the activation of macrophages were determined through analysis of activation markers by fluorescence-activated cell sorter and induction of inflammatory cytokines using an ELISA.

View Article and Find Full Text PDF

Ubiquitinated endosomal proteins that are deposited into the lumens of multivesicular bodies are either sorted for lysosomal-mediated degradation or secreted as exosomes into the extracellular milieu. The mechanisms that underlie the sorting of cellular cargo proteins are currently unknown. In this study, we show that the COP9 signalosome (CSN)-associated protein CSN5 quantitatively regulated proteins that were sorted into exosomes.

View Article and Find Full Text PDF

Myeloid-derived suppressor cells (MDSCs) promote tumor progression. The mechanisms of MDSC development during tumor growth remain unknown. Tumor exosomes (T-exosomes) have been implicated to play a role in immune regulation, however the role of exosomes in the induction of MDSCs is unclear.

View Article and Find Full Text PDF

Exosomes released from different types of cells have been proposed to contribute to intercellular communication. We report that thymic exosome-like particles (ELPs) released from cells of the thymus can induce the development of Foxp3(+) regulatory T (Treg) cells in the lung and liver. Thymic ELPs also induce the conversion of thymic CD4(+)CD25(-) T cells into Tregs.

View Article and Find Full Text PDF