Publications by authors named "Spampinato A"

Nearly 35 years after its initial publication in 1989, the Italian Society of Sports Cardiology and the Italian Federation of Sports Medicine (FMSI), in collaboration with other leading Italian Cardiological Scientific Associations (ANCE - National Association of Outpatient Cardiology, ANMCO - National Association of Inpatient Cardiology, SIC - Italian Society of Cardiology), proudly present the 2023 version of the Cardiological Guidelines for Competitive Sports Eligibility. This publication is an update of the previous guidelines, offering a comprehensive and detailed guide for the participation of athletes with heart disease in sports. This edition incorporates the latest advances in cardiology and sports medicine, providing current information and recommendations.

View Article and Find Full Text PDF

Reactive N-hydroxy-9-azabicyclo[3.3.1]nonane (ABNOH) linked 2'-deoxyuridine 5'-O-mono- and triphosphates were synthesized through a CuAAC reaction of ABNOH-PEG-N with 5-ethynyl-dUMP or -dUTP.

View Article and Find Full Text PDF

A series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing 2- or 4-linked -cyclooctene (TCO) or bicyclononyne (BCN) tethered through a shorter propargylcarbamate or longer triethyleneglycol-based spacer were designed and synthesized. They were found to be good substrates for KOD XL DNA polymerase for primer extension enzymatic synthesis of modified oligonucleotides. We systematically tested and compared the reactivity of TCO- and BCN-modified nucleotides and DNA with several fluorophore-containing tetrazines in inverse electron-demand Diels-Alder (IEDDA) click reactions to show that the longer linker is crucial for efficient labeling.

View Article and Find Full Text PDF

Background And Aim: The efficacy and safety profiles of elbasvir-grazoprevir (EBR/GZR) has been established in more than 10 clinical trials. However, the characteristics of patients treated in routine clinical practice may differ. The present study was therefore designed to assess the real-life effectiveness of EBR/GZR therapy in the general population and among subgroups with a high hepatitis C virus (HCV) prevalence in France.

View Article and Find Full Text PDF

The Coronavirus-19 disease (COVID-19) related pandemic have deeply impacted human health, economy, psychology and sociality. Possible serious cardiac involvement in the infection has been described, raising doubts about complete healing after the disease in many clinical settings. Moreover, there is the suspicion that the vaccines, especially those based on mRNA technology, can induce myopericarditis.

View Article and Find Full Text PDF

Neuronal apoptosis and survival are regulated at the transcriptional level. To identify key genes and upstream regulators primarily responsible for these processes, we overlayed the temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite expression trends at the intersection of apoptosis and survival.

View Article and Find Full Text PDF

Pathogenic mutations in the non-syndromic hearing loss and deafness 1 (DFNB1) locus are the primary cause of monogenic inheritance for prelingual hearing loss. To unravel molecular pathways involved in etiopathology and look for early degeneration biomarkers, we used a system biology approach to analyze Cx30 mice at an early cochlear post-natal developmental stage. These mice are a DFNB1 mouse model with severely reduced expression levels of two connexins in the inner ear, Cx30, and Cx26.

View Article and Find Full Text PDF
Article Synopsis
  • Repeat expansions in the SCA1 gene are linked to an increased risk of ALS, as evidenced by a study of a large SCA1 family with both ALS and SCA1 patients showing similar symptoms.
  • The research utilized a systems biology approach to analyze genomic data from ALS patients and SCA1 family members, identifying shared and unique genes and biological processes related to motor neuron deterioration.
  • Findings revealed ALS-specific genetic variants in RNA metabolism-related genes, which suggest that disrupting RNA processes may play a key role in ALS development, highlighting the importance of personal genomic information in understanding complex diseases.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a multifactorial disease characterized by the interplay of genetic and environmental factors. In the majority of cases, ALS is sporadic, whereas familial forms occur in less than 10% of patients. Herein, we present the results of molecular analyses performed in a large cohort of Italian ALS patients, focusing on novel and already described variations in ALS-linked genes.

View Article and Find Full Text PDF

A plethora of genetic and molecular mechanisms have been implicated in the pathophysiology of the heterogeneous and multifactorial amyotrophic lateral sclerosis (ALS) disease, and hence the conventional "one target-one drug" paradigm has failed so far to provide effective therapeutic solutions, precisely because of the complex nature of ALS. This review intends to highlight how the integration of emerging "omics" approaches may provide a rational foundation for the comprehensive exploration of molecular pathways and dynamic interactions involved in ALS, for the identification of candidate targets and biomarkers that will assist in the rapid diagnosis and prognosis, lastly for the stratification of patients into different subgroups with the aim of personalized therapeutic strategies. To this purpose, particular emphasis will be placed on some potential therapeutic targets, including neurotrophic factors and histamine signaling that both have emerged as dysregulated at different omics levels in specific subgroups of ALS patients, and have already shown promising results in in vitro and in vivo models of ALS.

View Article and Find Full Text PDF

The Voltage-Dependent Anion-selective Channel (VDAC) is the pore-forming protein of mitochondrial outer membrane, allowing metabolites and ions exchanges. In Saccharomyces cerevisiae, inactivation of POR1, encoding VDAC1, produces defective growth in the presence of non-fermentable carbon source. Here, we characterized the whole-genome expression pattern of a VDAC1-null strain (Δpor1) by microarray analysis, discovering that the expression of mitochondrial genes was completely abolished, as consequence of the dramatic reduction of mtDNA.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative disease. Increasing the chances of success for future clinical strategies requires more in-depth knowledge of the molecular basis underlying disease heterogeneity. We recently laid the foundation for a molecular taxonomy of ALS by whole-genome expression profiling of motor cortex from sporadic ALS (SALS) patients.

View Article and Find Full Text PDF

Background: Histamine is an immune modulator, neuroprotective, and remyelinating agent, beneficially acting on skeletal muscles and promoting anti-inflammatory features in amyotrophic lateral sclerosis (ALS) microglia. Drugs potentiating the endogenous release of histamine are in trial for neurological diseases, with a role not systematically investigated in ALS. Here, we examine histamine pathway associations in ALS patients and the efficacy of a histamine-mediated therapeutic strategy in ALS mice.

View Article and Find Full Text PDF

The data have been obtained from FABP4 inhibitor molecules previously published. The 120 compounds were used to build a 3D-QSAR model. The development of the QSAR model has been undertaken with the use of Forge software using the PM3 optimized structure and the experimental IC of each compound.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has highlighted small molecule inhibitors of adipocyte fatty-acid binding protein 4 (FABP4), which is important in regulating fat storage, lipolysis, and inflammation, targeting various diseases.
  • FABP4 has emerged as a potential target for treating type 2 diabetes, metabolic disorders, and certain cancers due to its role in fatty acid metabolism.
  • A new study developed a quantitative structure-activity relationship (QSAR) model and a scaffold-hopping approach, resulting in the identification of three novel and effective FABP4 inhibitors with predicted bioactivity aligning closely with experimental results.
View Article and Find Full Text PDF

Recent landmark publications from our research group outline a transformative approach to defining, studying and treating amyotrophic lateral sclerosis (ALS). Rather than approaching ALS as a single entity, we advocate targeting therapies to distinct "clusters" of patients based on their specific genomic and molecular features. Our findings point to the existence of a molecular taxonomy for ALS, bringing us a step closer to the establishment of a precision medicine approach in neurology practice.

View Article and Find Full Text PDF

Mutations in GJB2, the gene that encodes connexin 26 (Cx26), are the most common cause of sensorineural hearing impairment. The truncating variant 35delG, which determines a complete loss of Cx26 protein function, is the prevalent GJB2 mutation in several populations. Here, we generated and analyzed Gjb2 mice as a model of heterozygous human carriers of 35delG.

View Article and Find Full Text PDF

Nerve growth factor, the prototype of a family of neurotrophins, elicits differentiation and survival of peripheral and central neuronal cells. Although its neural mechanisms have been studied extensively, relatively little is known about the transcriptional regulation governing its effects. We have previously observed that in primary cultures of rat hippocampal neurons treatment with nerve growth factor for 72 hr increases neurite outgrowth and cell survival.

View Article and Find Full Text PDF

The mechanisms of interaction between bodies with statistically arranged features present characteristics common to different abrasive processes, such as dressing of abrasive tools. In contrast with the current empirical approach used to estimate the results of operations based on attritive interactions, the method we present in this paper allows us to predict the output forces and the topography of a simulated grinding wheel for a set of specific operational parameters (speed ratio and radial feed-rate), providing a thorough understanding of the complex mechanisms regulating these processes. In modelling the dressing mechanisms, the abrasive characteristics of both bodies (grain size, geometry, inter-space and protrusion) are first simulated; thus, their interaction is simulated in terms of grain collisions.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the motor nervous system. Despite the mechanism underlying motor neuron death is not yet clarified, multiple pathogenic processes have been proposed to account for ALS. Among these, inflammatory/immune responses have recently gained particular interest, although there are conflicting reports on the role of these processes in ALS pathogenesis and treatment.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Despite intensive research, the origin and progression of ALS remain largely unknown, suggesting that the traditional clinical diagnosis and treatment strategies might not be adequate to completely capture the molecular complexity underlying the disease. In our previous work, comprehensive genomic profiling of 41 motor cortex samples enabled to discriminate control from sporadic ALS patients and segregated these latter into two distinct subgroups, each associated with different deregulated genes and pathways.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive and incurable neurodegenerative disease. Although several compounds have shown promising results in preclinical studies, their translation into clinical trials has failed. This clinical failure is likely due to the inadequacy of the animal models that do not sufficiently reflect the human disease.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating and still untreatable motor neuron disease. Despite the molecular mechanisms underlying ALS pathogenesis that are still far from being understood, several studies have suggested the importance of a genetic contribution in both familial and sporadic forms of the disease. In addition to single-nucleotide polymorphisms (SNPs), which account for only a limited number of ALS cases, a consistent number of common and rare copy number variations (CNVs) have been associated to ALS.

View Article and Find Full Text PDF

Background: Atrial tachyarrhythmias (ATAs) are mainly treated by pharmacologic therapy for rate control or rhythm control. The aim of our study was to compare sotalol (S) versus beta-blocking agents (BB) in terms of prevention of ATA, cardioversions (CVs), and cardiovascular hospitalizations (H) in patients paced for bradycardia-tachycardia form of sinus node disease (BT-SND).

Methods: One hundred thirty-five patients (67 males, aged 73 +/- 7 years) were enrolled in a prospective, parallel, randomized, single-blind, multicenter study.

View Article and Find Full Text PDF

The authors are hereby presenting a rare case of neoformation developing on the left kidney in a 80-year-old patient affected by left lumbar backache. The neoformation appears doubtful in nature, on ultrasonography, CT scan and MRI. The lesion is roundish and contiguous at the kidney convex edge; due to its clinical aspects, it requires a surgical management and is, therefore, easily excised.

View Article and Find Full Text PDF