Publications by authors named "Spain M"

The red flour beetle Tribolium castaneum is a resource-rich model for genomic and developmental studies. To extend previous studies on Tribolium eye development, we produced transcriptomes for normal-eyed and eye-depleted heads of pupae and adults to identify differentially transcript-enriched (DE) genes in the visual system. Unexpectedly, cuticle-related genes were the largest functional class in the pupal compound eye DE gene population, indicating differential enrichment in three distinct cuticle components: clear lens facet cuticle, highly melanized cuticle of the ocular diaphragm, which surrounds the Tribolium compound eye for internal fortification, and newly identified facet margins of the tanned cuticle, possibly enhancing external fortification.

View Article and Find Full Text PDF

Providing enrichment that expands the range of behavioral opportunities associated with food acquisition and environmental exploration is an important contributing factor to the well-being of zoo animals. These behaviors can be difficult to promote in carnivores, given their foraging strategies and the logistical, ethical, and financial challenges of providing live prey. In this study, we introduced a novel feeding enrichment to Jacksonville Zoo and Gardens' five adult American alligators (Alligator mississippiensis) in an attempt to simulate a live prey organism within the exhibit and promote natural hunting behaviors like chasing and lunging, as well as increase daily activity levels.

View Article and Find Full Text PDF

The body condition of an animal is an indicator of health status and is dependent upon many factors, some of which can vary between wild and captive settings. Despite this, there have not been many studies on how captivity affects body condition relative to wild animal populations. This study explores the body condition of captive and wild American alligators (Alligator mississippiensis) because reptiles are frequently overlooked in studies of captive animal health and because alligators are well-represented in captivity.

View Article and Find Full Text PDF

The role of hysterectomy in the development of pelvic floor dysfunction (PFD) remains widely disputed. The controversy is fueled by two key factors. The first is conflicting association studies that make it difficult to establish whether a link truly exists.

View Article and Find Full Text PDF

Snakes are sentient animals and should be subject to the accepted general welfare principles of other species. However, they are also the only vertebrates commonly housed in conditions that prevent them from adopting rectilinear behavior (ability to fully stretch out). To assess the evidence bases for historical and current guidance on snake spatial considerations, we conducted a literature search and review regarding recommendations consistent with or specifying ≥1 × and <1 × snake length enclosure size.

View Article and Find Full Text PDF

Marine natural products (MNPs) have been an important and rich source for antimicrobial drug discovery and an effective alternative to control drug resistant infections. Herein, we report bioassay guided fractionation of marine extracts from sponges , and that led us to identify novel compounds with antimicrobial properties. Tertiary amines or quaternary amine salts: aniline , benzylamine , tertiary amine and , and quaternary amine salt , along with three known compounds () were isolated from a crude extract and MeOH eluent marine extracts.

View Article and Find Full Text PDF

Background: Many pregnant people find no bridge to ongoing specialty or primary care after giving birth, even when clinical and social complications of pregnancy signal need. Black, indigenous, and all other women of color are especially harmed by fragmented care and access disparities, coupled with impacts of racism over the life course and in health care.

Methods: We launched the initiative "Bridging the Chasm between Pregnancy and Health across the Life Course" in 2018, bringing together patients, advocates, providers, researchers, policymakers, and systems innovators to create a National Agenda for Research and Action.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-resistant bacteria are on the rise, necessitating robust methods to assess the combined efficacy of existing antibiotics and new synthetic compounds for treating severe infections.
  • Marine natural products (MNPs) have shown potential as effective alternatives in antimicrobial treatments, leading to the identification of novel antimicrobial compounds from marine sponge extracts.
  • The study demonstrated that certain synthetic analogs exhibited significant antibacterial activity, particularly against methicillin-resistant Staphylococcus aureus (MRSA), and found that combinations of these compounds with traditional antibiotics can have a synergistic effect, indicating their promise for future therapeutic use.
View Article and Find Full Text PDF

We recently reported the discovery of nontoxic cyclam-derived compounds that are active against drug-resistant Mycobacterium tuberculosis. In this paper we report exploration of the structure-activity relationship for this class of compounds, identifying several simpler compounds with comparable activity. The most promising compound identified, possessing significantly improved water solubility, displayed high levels of bacterial clearance in an in vivo zebrafish embryo model, suggesting this compound series has promise for in vivo treatment of tuberculosis.

View Article and Find Full Text PDF

Saccharomyces cerevisiae enter quiescence during extended growth in culture (greater than 7 days). Here, we describe a method to separate quiescent from non-quiescent cells by density gradient. We also describe approaches for DAPI staining the chromatin of quiescent cells, measuring quiescent cell viability, and extracting RNA from quiescent cells for use in genomics experiments.

View Article and Find Full Text PDF

Tuberculosis (TB) accounted for 1.5 million deaths in 2014, and new classes of anti-TB drugs are required. We report a class of functionalized 1,8-disubstituted cyclam derivatives that display low micromolar activity against pathogenic mycobacteria.

View Article and Find Full Text PDF

A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization.

View Article and Find Full Text PDF

ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1.

View Article and Find Full Text PDF

A chemoselective switch between reaction pathways by an alcohol cosolvent effect in a general SmI2-mediated synthesis of uracil derivatives is described. The method relies on the use of coordinating solvents to increase the redox potential of Sm(II) and results in a chemoselective 1,2-reduction (SmI2-H2O) or 1,2-migration via in situ generated N-acyliminium ions (SmI2-ethylene glycol, EG). This work exploits the mild conditions of the SmI2-mediated monoreduction of barbituric acids and offers an attractive protocol for the synthesis of uracil derivatives with biological activity from readily accessible building blocks.

View Article and Find Full Text PDF

The first general method for the chemoselective synthesis of α,α-dideuterio alcohols directly from feedstock carboxylic acids under single electron transfer conditions using SmI2 is reported. This reaction proceeds after the activation of Sm(II) with a Lewis base, results in excellent levels of deuterium incorporation across a wide range of substrates, and represents an attractive alternative to processes mediated by pyrophoric alkali metal deuterides.

View Article and Find Full Text PDF

Samarium(II) iodide-water-amine reagents have emerged as some of the most powerful reagents (E° = -2.8 V) for the reduction of unactivated carboxylic acid derivatives to primary alcohols under single electron transfer conditions, a transformation that had been considered to lie outside the scope of the classic SmI2 reductant for more than 30 years. In this article, we present a detailed mechanistic investigation of the reduction of unactivated esters, carboxylic acids, and amides using SmI2-water-amine reagents, in which we compare the reactivity of three functional groups.

View Article and Find Full Text PDF

The mechanism of a recently reported first mono-reduction of cyclic 1,3-diesters (Meldrum's acids) to β-hydroxy acids with SmI2-H2O has been studied using a combination of reactivity, deuteration, kinetic isotope and radical clock experiments. Most crucially, the data indicate that the reaction proceeds via reversible electron transfer and that water, as a ligand for SmI2, stabilizes the radical anion intermediate rather than only promoting the first electron transfer as originally proposed.

View Article and Find Full Text PDF

Mechanistic details pertaining to the SmI2-H2O-mediated reduction and reductive coupling of 6-membered lactones, the first class of simple unactivated carboxylic acid derivatives that had long been thought to lie outside the reducing range of SmI2, have been elucidated. Our results provide new experimental evidence that water enables the productive electron transfer from Sm(II) by stabilization of the radical anion intermediate rather than by solely promoting the first electron transfer as originally proposed. Notably, these studies suggest that all reactions involving the generation of ketyl-type radicals with SmI2 occur under a unified mechanism based on the thermodynamic control of the second electron transfer step, thus providing a blueprint for the development of a broad range of novel chemoselective transformations via open-shell electron pathways.

View Article and Find Full Text PDF

The mechanism of the SmI2 -mediated reduction of unactivated esters has been studied using a combination of kinetic, radical clocks and reactivity experiments. The kinetic data indicate that all reaction components (SmI2 , amine, H2 O) are involved in the rate equation and that electron transfer is facilitated by Brønsted base assisted deprotonation of water in the transition state. The use of validated cyclopropyl-containing radical clocks demonstrates that the reaction occurs via fast, reversible first electron transfer, and that the electron transfer from simple Sm(II) complexes to aliphatic esters is rapid.

View Article and Find Full Text PDF

Samarium(II) iodide-water complexes are ideally suited to mediate challenging electron transfer reactions, yet the effective redox potential of these powerful reductants has not been determined. Herein, we report an examination of the reactivity of SmI2(H2O)n with a series of unsaturated hydrocarbons and alkyl halides with reduction potentials ranging from -1.6 to -3.

View Article and Find Full Text PDF

The first general reduction of nitriles to primary amines under single electron transfer conditions is demonstrated using SmI2 (Kagan's reagent) activated with Lewis bases. The reaction features excellent functional group tolerance and represents an attractive alternative to the use of pyrophoric alkali metal hydrides. Notably, the electron transfer from Sm(II) to CN functional groups generates imidoyl-type radicals from bench stable nitrile precursors.

View Article and Find Full Text PDF

Highly chemoselective direct reduction of primary, secondary, and tertiary amides to alcohols using SmI2/amine/H2O is reported. The reaction proceeds with C-N bond cleavage in the carbinolamine intermediate, shows excellent functional group tolerance, and delivers the alcohol products in very high yields. The expected C-O cleavage products are not formed under the reaction conditions.

View Article and Find Full Text PDF

Substrate-directable reactions play a pivotal role in organic synthesis, but are uncommon in reactions proceeding via radical mechanisms. Herein, we provide experimental evidence showing dramatic rate acceleration in the Sm(II)-mediated reduction of cyclic esters that is enabled by transient chelation between a directing group and the lanthanide center. This process allows unprecedented chemoselectivity in the reduction of cyclic esters using SmI2-H2O and for the first time proceeds with a broad substrate scope.

View Article and Find Full Text PDF

Recently, samarium(II) iodide reductants have emerged as powerful single electron donors for the highly chemoselective reduction of common functional groups. Complete control of the product formation can be achieved on the basis of a judicious choice of a Sm(II) complex/proton donor couple, even in the presence of extremely sensitive functionalities (iodides, aldehydes). In most cases, the reductions are governed by thermodynamic control of the first electron transfer, which opens up new prospects for unprecedented transformations via radical intermediates under mild regio-, chemo- and diastereoselective conditions that are fully orthogonal to hydrogenation or metal-hydride mediated processes.

View Article and Find Full Text PDF