We present an all-fiber-based laser gas analyzer (LGA) employing quartz-enhanced photoacoustic spectroscopy (QEPAS) and a side-polished fiber (SPF). The LGA comprises a custom quartz tuning fork (QTF) with 0.8 mm prong spacing, two acoustic micro-resonators (mR) located on either side of the prong spacing, and a single-mode fiber containing a 17 mm polished section passing through both mRs and QTF.
View Article and Find Full Text PDFThe process by which Palaeolithic Europe was transformed from a Neanderthal-dominated region to one occupied exclusively by Homo sapiens has proven challenging to diagnose. A blurred chronology has made it difficult to determine when Neanderthals disappeared and whether modern humans overlapped with them. Italy is a crucial region because here we can identify not only Late Mousterian industries, assumed to be associated with Neanderthals, but also early Upper Palaeolithic industries linked with the appearance of early H.
View Article and Find Full Text PDFImmune checkpoint inhibitors and immune-related biomarkers are increasingly investigated in rectal cancer (RC). We retrospectively analysed PD-L1 expression in diagnostic biopsy and resection samples from RC patients treated at our centre between 2000 and 2020. PD-L1 immunostaining (22C3 clone) was evaluated according to tumour proportion (TPS), immune cell (ICS), and the combined positive score (CPS).
View Article and Find Full Text PDFHere we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures.
View Article and Find Full Text PDFThe Aurignacian is the first European technocomplex assigned to Homo sapiens recognized across a wide geographic extent. Although archaeologists have identified marked chrono-cultural shifts within the Aurignacian mostly by examining the techno-typological variations of stone and osseous tools, unraveling the underlying processes driving these changes remains a significant scientific challenge. Scholars have, for instance, hypothesized that the Campanian Ignimbrite (CI) super-eruption and the climatic deterioration associated with the onset of Heinrich Event 4 had a substantial impact on European foraging groups.
View Article and Find Full Text PDFPhotoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range.
View Article and Find Full Text PDFThe extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves.
View Article and Find Full Text PDFWe report on a photoacoustic sensor system based on a differential photoacoustic cell to detect the concentration of CO impurities in hydrogen. A DFB-QCL laser with a central wavelength of 4.61 µm was employed as an exciting source with an optical power of 21 mW.
View Article and Find Full Text PDFIn this paper, an end-to-end methane gas detection algorithm based on transformer and multi-layer perceptron (MLP) for tunable diode laser absorption spectroscopy (TDLAS) is presented. It consists of a Transformer-based U-shaped Neural Network (TUNN) filtering algorithm and a concentration prediction network (CPN) based on MLP. This algorithm employs an end-to-end architectural design to extract information from noisy transmission spectra of methane and derive the CH concentrations from denoised spectra, without intermediate steps.
View Article and Find Full Text PDFFolded-optics-based quartz-enhanced photoacoustic and photothermal hybrid spectroscopy (FO-QEPA-PTS) is reported for the first time. In FO-QEPA-PTS, the detection of the photoacoustic and photothermal hybrid signal is achieved through the use of a custom quartz tuning fork (QTF), thereby mitigating the issue of resonant frequency mismatch typically encountered in quartz-enhanced photoacoustic-photothermal spectroscopy employing multiple QTFs. A multi-laser beam, created by a multi-pass cell (MPC) with a designed single-line spot pattern, partially strikes the inner edge of the QTF and partially passes through the prong of the QTF, thereby generating photoacoustic and photothermal hybrid signals.
View Article and Find Full Text PDFThis paper studies the influence of temperature and of rainfall intensity and the effect of such variations on the treatment efficiencies and on the electrical consumptions in seven medium-large size Wastewater Treatment Plants (WWTPs) in Apulia in South Italy (Bari, Barletta, Brindisi, Lecce, Foggia, Andria and Taranto). It has been observed, in the considered WWTPs, a slight but clear increase of the incoming flow due to the increase in rainfall intensity, which results to an increase of the energy consumption per incoming volume. The impact of the climate change to the incoming flow, during the last five years (2016-2020), has been assessed indicating that an increase in rainfall intensity results to an increase of the WWTPs energy consumptions per wastewater treated volume.
View Article and Find Full Text PDFIn this work, we report on the novel employment of lithium niobate tuning forks as acoustic transducers in photoacoustic spectroscopy for gas sensing. The lithium niobate tuning fork (LiNTF) exhibits a fundamental resonance frequency of 39196.6 Hz and a quality factor Q = 5900 at atmospheric pressure.
View Article and Find Full Text PDFWe present an optical sensor based on light-induced thermoelastic spectroscopy for the detection of hydrogen sulfide (HS) in sulfur hexafluoride (SF). The sensor incorporates a compact multi-pass cell measuring 6 cm × 4 cm × 4 cm and utilizes a quartz tuning fork (QTF) photodetector. A 1.
View Article and Find Full Text PDFA comparative analysis of two different approaches developed to deal with molecular relaxation in photoacoustic spectroscopy is here reported. The first method employs a statistical analysis based on partial least squares regression, while the second method relies on the development of a digital twin of the photoacoustic sensor based on the theoretical modelling of the occurring relaxations. Methane detection within a gas matrix of synthetic air with variable humidity level is selected as case study.
View Article and Find Full Text PDFWe present a quartz enhanced photoacoustic spectroscopy (QEPAS) gas sensor designed for precise monitoring of ammonia (NH) at ppb-level concentrations. The sensor is based on a novel custom quartz tuning fork (QTF) with a mid-infrared quantum cascade laser emitting at 9.55 µm.
View Article and Find Full Text PDFIn this work, we report on the implementation of a multi-quantum cascade laser (QCL) module as an innovative light source for quartz-enhanced photoacoustic spectroscopy (QEPAS) sensing. The source is composed of three different QCLs coupled with a dichroitic beam combiner module that provides an overlapping collimated beam output for all three QCLs. The 3λ-QCL QEPAS sensor was tested for detection of NO, SO, and NH in sequence in a laboratory environment.
View Article and Find Full Text PDFImmune checkpoint inhibitors cause side effects ranging from autoimmune endocrine disorders to severe cardiotoxicity. Periodic Fasting mimicking diet (FMD) cycles are emerging as promising enhancers of a wide range of cancer therapies including immunotherapy. Here, either FMD cycles alone or in combination with anti-OX40/anti-PD-L1 are much more effective than immune checkpoint inhibitors alone in delaying melanoma growth in mice.
View Article and Find Full Text PDFHere we report on a study of the non-radiative relaxation dynamic of CH and CH in wet nitrogen-based matrixes by using the quartz-enhanced photoacoustic spectroscopy (QEPAS) technique. The dependence of the QEPAS signal on pressure at fixed matrix composition and on HO concentration at fixed pressure was investigated. We demonstrated that QEPAS measurements can be used to retrieve both the effective relaxation rate in the matrix, and the V-T relaxation rate associated to collisions with nitrogen and water vapor.
View Article and Find Full Text PDFIn this work, a comparison between Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) and Beat Frequency-QEPAS (BF-QEPAS) techniques for environmental monitoring of pollutants is reported. A spectrophone composed of a T-shaped Quartz Tuning Fork (QTF) coupled with resonator tubes was employed as a detection module. An interband cascade laser has been used as an exciting source, allowing the targeting of two NO absorption features, located at 1900.
View Article and Find Full Text PDFA spinal cord injury interrupts the communication between the brain and the region of the spinal cord that produces walking, leading to paralysis. Here, we restored this communication with a digital bridge between the brain and spinal cord that enabled an individual with chronic tetraplegia to stand and walk naturally in community settings. This brain-spine interface (BSI) consists of fully implanted recording and stimulation systems that establish a direct link between cortical signals and the analogue modulation of epidural electrical stimulation targeting the spinal cord regions involved in the production of walking.
View Article and Find Full Text PDFThis work investigates the behavior of commercial and custom Quartz tuning forkss (QTF) under humidity variations. The QTFs were placed inside a humidity chamber and the parameters were studied with a setup to record the resonance frequency and quality factor by resonance tracking. The variations of these parameters that led to a 1% theoretical error on the Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) signal were defined.
View Article and Find Full Text PDFQuartz tuning forks (QTFs) are employed as sensitive elements for gas sensing applications implementing quartz-enhanced photoacoustic spectroscopy. Therefore, proper design of the QTF read-out electronics is required to optimize the signal-to-noise ratio (SNR), and in turn, the minimum detection limit of the gas concentration. In this work, we present a theoretical study of the SNR trend in a voltage-mode read-out of QTFs, mainly focusing on the effects of (i) the noise contributions of both the QTF-equivalent resistor and the input bias resistor R of the preamplifier, (ii) the operating frequency, and (iii) the bandwidth (BW) of the lock-in amplifier low-pass filter.
View Article and Find Full Text PDF