We introduce a technique, traction rheoscopy, to carry out mechanical testing of colloidal solids. A confocal microscope is used to directly measure stress and strain during externally applied deformation. The stress is measured, with single-mPa resolution, by determining the strain in a compliant polymer gel in mechanical contact with the colloidal solid.
View Article and Find Full Text PDFWe formulate and characterize silicone gels near the gelation threshold with tunable refractive index, 1.4 < < 1.49, and small viscoelastic moduli, '∼1 Pa, for use in traction force microscopy.
View Article and Find Full Text PDFColloidal crystals exhibit interesting properties that are in many ways analogous to their atomic counterparts. They have the same crystal structures, undergo the same phase transitions, and possess the same crystallographic defects. In contrast to these structural properties, the mechanical properties of colloidal crystals are quite different from those of atomic systems.
View Article and Find Full Text PDFThe severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation.
View Article and Find Full Text PDFDespite significant advances in particle imaging technologies over the past two decades, few advances have been made in particle tracking, i.e., linking individual particle positions across time series data.
View Article and Find Full Text PDFUnlike crystalline atomic and ionic solids, texture development due to crystallographically preferred growth in colloidal crystals is less studied. Here we investigate the underlying mechanisms of the texture evolution in an evaporation-induced colloidal assembly process through experiments, modeling, and theoretical analysis. In this widely used approach to obtain large-area colloidal crystals, the colloidal particles are driven to the meniscus via the evaporation of a solvent or matrix precursor solution where they close-pack to form a face-centered cubic colloidal assembly.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2020
Equilibrium interfaces were established between body-centered cubic (BCC) crystals and their liquid using charged colloidal particles in an electric bottle. By measuring a time series of interfacial positions and computing the average power spectrum, their interfacial stiffness was determined according to the capillary fluctuation method. For the (100) and the (114) interfaces, the stiffnesses were 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2019
We study the kinetics of crystal growth and melting of two types of colloidal crystals: body-centered cubic (BCC) crystals and face-centered cubic (FCC) crystals. A dielectrophoretic "electric bottle" confines colloids, enabling precise control of the motion of the interface. We track the particle motion, and by introducing a structural order parameter, we measure the jump frequencies of particles to and from the crystal and determine from these the free-energy difference between the phases and the interface mobility.
View Article and Find Full Text PDFMany powders employed in the food and pharmaceutical industries are produced through spray drying because it is a cost efficient process that offers control over the particle size. However, most commercially available spray-driers cannot produce drops with diameters below 1 μm, limiting the size of spray-dried particles to values above 300 nm. We recently developed a microfluidic spray-drier that can form much smaller drops than commercially available spray-driers.
View Article and Find Full Text PDFCrystals with low latent heat are predicted to melt from an entropically stabilized body-centered cubic symmetry. At this weakly first-order transition, strongly correlated fluctuations are expected to emerge, which could change the nature of the transition. Here we show how large fluctuations stabilize bcc crystals formed from charged colloids, giving rise to strongly power-law correlated heterogeneous dynamics.
View Article and Find Full Text PDFColloidal particles were sedimented onto patterned glass slides to grow three-dimensional bicrystals with a controlled structure. Three types of symmetric tilt grain boundaries between close-packed face-centered-cubic crystals were produced: Σ5(100),Σ17(100), and Σ3(110). The structure of the crystals and their defects were visualized by confocal microscopy, and characterized by simple geometric measurements, including image difference, thresholding, and reprojection.
View Article and Find Full Text PDFJ Phys Chem B
September 2016
The bioavailability of hydrophobic drugs strongly increases if they are formulated as amorphous materials because the solubility of the amorphous phase is much higher than that of the crystal. Moreover, the stability of these particles against crystallization during storage increases with decreasing particle size. Hence, it is advantageous to formulate poorly water soluble drugs as amorphous nanoparticles.
View Article and Find Full Text PDFFormulation of hydrophobic drugs as amorphous materials is highly advantageous as this increases their solubility in water and therefore their bioavailability. However, many drugs have a high propensity to crystallize during production and storage, limiting the usefulness of amorphous drugs. We study the crystallization of undercooled liquid fenofibrate, a model hydrophobic drug.
View Article and Find Full Text PDFAmorphous nanoparticles (a-NPs) have physicochemical properties distinctly different from those of the corresponding bulk crystals; for example, their solubility is much higher. However, many materials have a high propensity to crystallize and are difficult to formulate in an amorphous structure without stabilizers. We fabricated a microfluidic nebulator that can produce amorphous NPs from a wide range of materials, even including pure table salt (NaCl).
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2015
Colloidal particles interacting via a long-range repulsion can, in contrast to hard-sphere systems, exhibit crystalline ordering at low volume fraction. Here we experimentally investigate the structure and properties of such "colloidal Wigner crystals." We find a body-centered-cubic crystalline phase at volume fractions of ϕ≳15%, which exhibits large fluctuations of individual particles from their average positions.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
We perform a series of deformation experiments on a monodisperse, hard-sphere colloidal glass while simultaneously following the three-dimensional trajectories of roughly 50,000 individual particles with a confocal microscope. In each experiment, we deform the glass in pure shear at a constant strain rate [(1-5)×10(-5) s(-1)] to maximum macroscopic strains (5%-10%) and then reverse the deformation at the same rate to return to zero macroscopic strain. We also measure three-dimensional particle trajectories in an identically prepared quiescent glass in which the macroscopic strain is always zero.
View Article and Find Full Text PDFRev Sci Instrum
January 2013
Modern confocal microscopes enable high-precision measurement in three dimensions by collecting stacks of 2D (x-y) images that can be assembled digitally into a 3D image. It is difficult, however, to ensure position accuracy, particularly along the optical (z) axis where scanning is performed by a different physical mechanism than in x-y. We describe a simple device to calibrate simultaneously the x, y, and z pixel-to-micrometer conversion factors for a confocal microscope.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2010
Face-centered cubic single crystals of σ=1.55 μm diameter hard-sphere silica colloidal particles were prepared by sedimentation onto (100) and (110) oriented templates. The crystals had a wide interface with the overlaying liquid that was parallel to the template.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2009
We present a confocal microscopy study of 1.55 microm monodisperse silica hard spheres as they sediment and crystallize at the bottom wall of a container. If the particles sediment onto a feature less flat wall, the two bottom layers crystallize simultaneously and layerwise growth follows.
View Article and Find Full Text PDFStructural rearrangements are an essential property of atomic and molecular glasses; they are critical in controlling resistance to flow and are central to the evolution of many properties of glasses, such as their heat capacity and dielectric constant. Despite their importance, these rearrangements cannot directly be visualized in atomic glasses. We used a colloidal glass to obtain direct three-dimensional images of thermally induced structural rearrangements in the presence of an applied shear.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2006
The short-range order in liquid binary Al-rich alloys (Al-Fe, Al-Ti) was studied by x-ray diffraction. The measurements were performed using a novel containerless technique which combines aerodynamic levitation with inductive heating. The average structure factors, S(Q), have been determined for various temperatures and compositions in the stable liquid state.
View Article and Find Full Text PDFThe formation of dislocations is central to our understanding of yield, work hardening, fracture, and fatigue of crystalline materials. While dislocations have been studied extensively in conventional materials, recent results have shown that colloidal crystals offer a potential model system for visualizing their structure and dynamics directly in real space. Although thermal fluctuations are thought to play a critical role in the nucleation of these defects, it is difficult to observe them directly.
View Article and Find Full Text PDF