Cancer cells mechanically interact with the tumor microenvironment during cancer development. Mechano-reciprocity has emerged as a crucial factor affecting anti-cancer drug resistance during adjuvant therapy. Here, we investigated the focal adhesion kinase (FAK)/Yes-associated protein (YAP) signaling axis as a prospective strategy for circumventing cisplatin resistance in ovarian cancer (OC).
View Article and Find Full Text PDFAlzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder. Most existing treatments only provide symptomatic solutions. Here, we introduce currently available commercial drugs and new therapeutics, including repositioned drugs, to treat AD.
View Article and Find Full Text PDFDespite implementation of nanomechanical studies in cancer research, studies on the nanomechanical aspects of drug resistance in cancer are lacking. Here, we established the mechanical signatures of drug-resistant breast cancer cells using atomic force microscopy-based indentation techniques and functionalized nanopatterned substrates (NPS). Additionally, we examined the expression of proteins pertinent to focal adhesions in order to elucidate the molecular signatures responsible for the acquisition of drug resistance in breast cancer cells.
View Article and Find Full Text PDFPolymers (Basel)
August 2020
The unique structure and physiology of a tumor microenvironment impede intra-tumoral penetration of chemotherapeutic agents. A novel iRGD peptide that exploits the tumor microenvironment can activate integrin-dependent binding to tumor vasculatures and neuropilin-1 (NRP-1)-dependent transport to tumor tissues. Recent studies have focused on its dual-targeting ability to achieve enhanced penetration of chemotherapeutics for the efficient eradication of cancer cells.
View Article and Find Full Text PDFThe advantages of atomic force microscopy (AFM) in biological research are its high imaging resolution, sensitivity, and ability to operate in physiological conditions. Over the past decades, rigorous studies have been performed to determine the potential applications of AFM techniques in disease diagnosis and prognosis. Many pathological conditions are accompanied by alterations in the morphology, adhesion properties, mechanical compliances, and molecular composition of cells and tissues.
View Article and Find Full Text PDFChemotherapeutic resistance is one of the main obstacles for cancer remission. To understand how cancer cells acquire chemotherapeutic resistance, biochemical studies focusing on drug target alteration, altered cell proliferation, and reduced susceptibility to apoptosis were performed. Advances in nano-mechanobiology showed that the enhanced mechanical deformability of cancer cells accompanied by cytoskeletal alteration is a decisive factor for cancer development.
View Article and Find Full Text PDFBackground: The mechanical deformability of cancer cells has attracted particular attention as an emerging biomarker for the prediction of anti-cancer drug sensitivity. Nevertheless, it has not been possible to establish a general rubric for the identification of drug susceptibility in breast cancer cells from a mechanical perspective. In the present study, we investigated the mechanical alteration associated with resistance to adjuvant therapy in breast cancer cells.
View Article and Find Full Text PDFThe effective cure for oral squamous cell carcinoma (OSCC) patients is challenging due late diagnosis and fatal metastasis. The standard diagnosis for OSCC often depends on the subjective interpretation of conventional histopathology. Additionally, there is no standard way for OSCC prognosis.
View Article and Find Full Text PDFSince various bio-mechanical assays have been introduced for studying mechanical properties of biological samples, much progress has been made in cancer biology. It has been noted that enhanced mechanical deformability can be used as a marker for cancer diagnosis. The relation between mechanical compliances and the metastatic potential of cancer cells has been suggested to be a promising prognostic marker.
View Article and Find Full Text PDFSphingosylphosphorylcholine (SPC) evokes perinuclear reorganization of keratin 8 (K8) filaments and regulates the viscoelasticity of metastatic cancer cells leading to enhanced migration. Few studies have addressed the compounds modulating the viscoelasticity of metastatic cancer cells. We studied the effects of sphingosine (SPH), sphingosine 1-phosphate (S1P), FTY720 and FTY720-phosphate (FTY720P) on SPC-induced K8 phosphorylation and reorganization using Western blot and confocal microscopy, and also evaluated the elasticity of PANC-1 cells by atomic force microscopy.
View Article and Find Full Text PDFBased on the assumption that leadership can be developed and college students possess leadership potential before becoming adult leaders, a Leadership Potential Scale was developed for Korean college students. Factors of leadership were extracted and preliminary items were developed through a literature review and semi-structured interviews. The items were assessed by experts for face validity, and the 12 factors and 78 items of the Leadership Potential Scale were derived from a factor analysis of data from 305 college students.
View Article and Find Full Text PDFA mechano-reciprocal interaction plays a critical role for cancer cells searching for favorable metastasis sites. For this study, we utilized nanoscaffolds that can control the maturation of focal adhesions in order to investigate how cancer cells mechanically respond to their nanoenvironments. We found that prostate cancer cells showed linearly decreasing proliferation rate and mechanical stiffness as the size of nanoislands on nanoscaffolds where the cells were grown decreases.
View Article and Find Full Text PDFThe mechanical properties of cells are considered promising biomarkers for the early detection of cancer and the testing of drug efficacy against it. Nevertheless, generalized correlations between drug resistance and the nano-mechanical properties of cancer cells are yet to be defined due to the lack of necessary studies. In this study, we conducted atomic force microscopy (AFM)-based nano-mechanical measurements of cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cells.
View Article and Find Full Text PDFThis study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy.
View Article and Find Full Text PDFAn enhanced mechanical compliance is considered to be a mechanical indicator for metastatic cancer cells. Our study using atomic force microscopy (AFM) revealed that breast cancer cells agreed well with this hypothesis. However, prostate cancer cells displayed a reverse correlation; less metastatic prostate cancer cells were more mechanically compliant.
View Article and Find Full Text PDFInt J Biol Sci
March 2014
It has been known that a single Müller cell displays a large variation in the cytoskeletal compositions along its cell body, suggesting different mechanical properties in different segments. Müller cells are thought to be involved in many retinal diseases such as retinoschisis, which can be facilitated by a mechanical stress. Thus, mapping of mechanical properties on localized nano-domains of Müller cells could provide essential information for understanding their structural functions in the retina and roles in their pathological progresses.
View Article and Find Full Text PDFBackground: Despite recent advances, it is not clear to correlate the mechanical compliances and the metastatic potential of cancer cells. In this study, we investigated combined signatures of mechanical compliances, adhesions, and calcium dynamics correlated with the metastatic potential of cancer cells.
Scope Of Review: We used the lowly (LNCaP) and highly (CL-1, CL-2) metastatic human prostate cancer cells.
Nanopatterned cross-linked polymers are important for applications with controlled mechanical properties. Grafted linear and cross-linked polydimethylacrylamide gels on micro- and nanopatterns were created using iniferter-driven quasi-living radical polymerization combined with conventional photolithography and nanosphere lithography. Micropatterned linear polymers reproduce the expected scaling behavior at moderate grafting density.
View Article and Find Full Text PDFInt J Biol Sci
January 2011
During the immune response, neutrophils display localized mechanical events by interacting with their environment through the micro-vascular transit, trans-endothelial, and trans-epithelial migration. Nano-mechanical studies of human neutrophils on localized nano-domains could provide the essential information for understanding their immune responsive functions. Using the Atomic Force Microscopy (AFM)-based micro-rheology, we have investigated rheological properties of the adherent human neutrophils on local nano-domains.
View Article and Find Full Text PDFThe mobile Lactococcus lactis Ll.LtrB group II intron integrates into DNA target sites by a mechanism in which the intron RNA reverse splices into one DNA strand while the intron-encoded protein uses a C-terminal DNA endonuclease domain to cleave the opposite strand and then uses the cleaved 3' end to prime reverse transcription of the inserted intron RNA. These reactions are mediated by an RNP particle that contains the intron-encoded protein and the excised intron lariat RNA, with both the protein and base pairing of the intron RNA used to recognize DNA target sequences.
View Article and Find Full Text PDF