Publications by authors named "Soyeon V Park"

Background: Most biological molecular complexes consist of multiple functional domains, yet rationally constructing such multifunctional complexes is challenging. Aptamers, the nucleic acid-based functional molecules, can perform multiple tasks including target recognition, conformational changes, and enzymatic activities, while being chemically synthesizable and tunable, and thus provide a basis for engineering enhanced functionalities through combination of multiple units. However, the conventional approach of simply combining aptamer units in a serial manner is susceptible to undesired crosstalk or interference between the aptamer units and to false interactions with non-target molecules; besides, the approach would require additional mechanisms to separate the units if they are desired to function independently.

View Article and Find Full Text PDF

Beyond storage and transmission of genetic information in cellular life, nucleic acids can perform diverse interesting functions, including specific target recognition and biochemical reaction acceleration; the versatile biopolymers, however, are acutely vulnerable to hydrolysis-driven degradation. Here, we demonstrate that the cage effect of choline dihydrogen phosphate permits active folding of nucleic acids like water, but prevents their phosphodiester hydrolysis unlike water. The choline-based ionic liquid not only serves as a universal inhibitor of nucleases, exceptionally extending half-lives of nucleic acids up to 6 500 000 times, but highly useful tasks of nucleic acids (e.

View Article and Find Full Text PDF

DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π-π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology.

View Article and Find Full Text PDF
Article Synopsis
  • Ribozymes are RNA molecules capable of catalyzing biochemical reactions, with various types identified, such as self-cleaving and splicing ribozymes.
  • Advances in understanding their structures and mechanisms allow for their application in synthetic biology, showcasing their versatility in manipulating biological systems.
  • The paper summarizes the features of ribozymes, engineering methods, and their potential to enhance technologies in artificial biological systems, highlighting both past and recent developments.
View Article and Find Full Text PDF

Despite considerable interest in the development of biosensors that can measure analyte concentrations with a dynamic range spanning many orders of magnitude, this goal has proven difficult to achieve. We describe here a modular biosensor architecture that integrates two different readout mechanisms into a single-molecule construct that can achieve target detection across an extraordinarily broad dynamic range. Our dual-mode readout DNA biosensor combines an aptamer and a DNAzyme to quantify adenosine triphosphate (ATP) with two different mechanisms, which respond to low (micromolar) and high (millimolar) concentrations by generating distinct readouts based on changes in fluorescence and absorbance, respectively.

View Article and Find Full Text PDF