Publications by authors named "Sowmya R Ramachandran"

Soybean rust is an economically significant disease caused by the fungus that negatively impacts soybean ( [L.] Merr.) production throughout the world.

View Article and Find Full Text PDF

The fungal pathogen, Magnaporthe oryzae Triticum pathotype, causing wheat blast disease was first identified in South America and recently spread across continents to South Asia and Africa. Here, we studied the genetic relationship among isolates found on the three continents. Magnaporthe oryzae strains closely related to a South American field isolate B71 were found to have caused the wheat blast outbreaks in South Asia and Africa.

View Article and Find Full Text PDF

Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined.

View Article and Find Full Text PDF

MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus ( f.

View Article and Find Full Text PDF

Extracellular ATP functions as an important signaling molecule in both plants and animals. In plants, ATP is released in the extracellular region of cells in response to environmental perturbations, such as herbivory, cellular damage, or other abiotic and biotic stimuli, which is then perceived by the purinoceptor P2K1 as a damaged-self signal for activation of defense responses. Given its involvement in various physiological processes, quantification of extracellular ATP is important for further understanding of its molecular function.

View Article and Find Full Text PDF

Fungal plant pathogens, like rust-causing biotrophic fungi, secrete hundreds of effectors into plant cells to subvert host immunity and promote pathogenicity on their host plants by manipulating specific physiological processes or signal pathways, but the actual function has been demonstrated for very few of these proteins. Here, we show that the PgtSR1 effector proteins, encoded by two allelic genes (PgtSR1-a and PgtSR1-b), from the wheat stem rust pathogen Puccinia graminis f. sp.

View Article and Find Full Text PDF

Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins.

View Article and Find Full Text PDF

Background: Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is a costly global disease that burdens farmers with yield loss and high fungicide expenses.

View Article and Find Full Text PDF