Endocrine-disrupting chemicals (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoblastoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.
View Article and Find Full Text PDFCylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
January 2024
Our previous studies have shown that CyanoHAB LPS (lipopolysaccharides) and LPS from cyanobacterial cultures induce pro-inflammatory effects on intestinal epithelial and immune cells in vitro. To expand our understanding, we investigated their impact on human keratinocytes, which are targeted during water recreational activities. LPS samples were isolated from CyanoHAB biomasses dominated by Microcystis, Aphanizomenon, Planktothrix, and Dolichospermum, or from axenic cultures of these genera.
View Article and Find Full Text PDFCyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons.
View Article and Find Full Text PDFMicrocystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells.
View Article and Find Full Text PDFIn recent decades, male infertility has been on the rise, largely attributed to exposure to chemicals with endocrine-disrupting properties. The adverse effects of disrupting androgen actions on the development and reproductive health of children and adolescents have been extensively studied. Flame retardants (FRs), used in consumer products to delay flammability, have been identified as antagonists of the androgen receptor (AR), potentially leading to adverse outcomes in male reproductive health later in life.
View Article and Find Full Text PDFCarcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established and battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific assay for detecting NGTxCs.
View Article and Find Full Text PDFThere is a growing need of alternative experimental models that avoid or minimize the use of animals due to ethical, economical, and scientific reasons. Surprisingly, the stable embryonic cell lines representing Nothobranchius spp., emerging vertebrate models in aging research, regenerative medicine, ecotoxicology, or genomics, have been not derived so far.
View Article and Find Full Text PDFFreshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells.
View Article and Find Full Text PDFComponents of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler.
View Article and Find Full Text PDFWhile human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
May 2023
Biomimetic antimicrobial polymers have been an area of great interest as the need for novel antimicrobial compounds grows due to the development of resistance. These polymers were designed and developed to mimic naturally occurring antimicrobial peptides in both physicochemical composition and mechanism of action. These antimicrobial peptide mimetic polymers have been extensively investigated using chemical, biophysical, microbiological, and computational approaches to gain a deeper understanding of the molecular interactions that drive function.
View Article and Find Full Text PDFThe prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs.
View Article and Find Full Text PDFReactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself.
View Article and Find Full Text PDFThe testis is a priority organ for developing alternative models to assess male reproductive health hazards of chemicals. This study characterized a 3D in vitro model of murine prepubertal Leydig TM3 cells with improved expression of steroidogenesis markers suitable for image-based screening of testicular toxicity. This 3D scaffold-free spheroid model was applied to explore the impact of prototypical endocrine-disrupting chemicals (EDCs) and environmental reprotoxicants (benzo[a]pyrene, 2- and 9-methylanthracenes, fluoranthene, triclosan, triclocarban, methoxychlor) on male reproductive health.
View Article and Find Full Text PDFThe frequencies of adverse outcomes associated with male reproductive health, including infertility and testicular cancer, are increasing. These adverse trends are partially attributed to increased exposure to environmental agents such as endocrine-disrupting chemicals (EDCs). This study addresses effects on EDCs on adjacent prepubertal Sertoli TM4 cells, specifically on 1) testicular gap junctional intercellular communication (GJIC), one of the hallmarks of non-genotoxic carcinogenicity, 2) GJIC building blocks connexins (Cx), and 3) mitogen-activated protein kinases MAPKs.
View Article and Find Full Text PDFDysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay.
View Article and Find Full Text PDFCationic and amphiphilic polymers are known to exert broad-spectrum antibacterial activity by a putative mechanism of membrane disruption. Typically, nonspecific binding to hydrophobic components of the complex biological milieu, such as globular proteins, is considered a deterrent to the successful application of such polymers. To evaluate the extent to which serum deactivates antibacterial polymethacrylates, we compared their minimum inhibitory concentrations in the presence and absence of fetal bovine serum.
View Article and Find Full Text PDFExtensive, uncontrolled growth of algae and cyanobacteria is an environmental, public health, economic, and technical issue in managing natural and engineered water systems. Synthetic biomimetic polymers have been almost exclusively considered antimicrobial alternatives to conventional antibiotics to treat human bacterial infections. Very little is known about their applicability in an aquatic environment.
View Article and Find Full Text PDFHumans are exposed to phthalates released from plastics, cosmetics, or food on a daily basis. Phthalates have low acute liver toxicity, but their chronic exposures could induce molecular and cellular effects linked to adverse health outcomes, such as liver tumor promotion or chronic liver diseases. The alternation of gap junctional intercellular communication (GJIC) and MAPK-Erk1/2 pathways in liver progenitor or oval cells can disrupt liver tissue homeostatic mechanisms and affect the development and severity of these adverse outcomes.
View Article and Find Full Text PDFToxicol Appl Pharmacol
October 2020
A decline in male fertility possibly caused by environmental contaminants, namely endocrine-disrupting chemicals (EDCs), is a topic of public concern and scientific interest. This study addresses a specific role of testicular gap junctional intercellular communication (GJIC) between adjacent prepubertal Leydig cells in endocrine disruption and male reproductive toxicity. Organochlorine pesticides (lindane, methoxychlor, DDT), industrial chemicals (PCB153, bisphenol A, nonylphenol and octylphenol) as well as personal care product components (triclosan, triclocarban) rapidly dysregulated GJIC in murine Leydig TM3 cells.
View Article and Find Full Text PDFGap junctional intercellular communication (GJIC) is a vital cellular process required for maintenance of tissue homeostasis. In vitro assessment of GJIC represents valuable phenotypic endpoint that could be effectively utilized as an integral component in modern toxicity testing, drug screening or biomedical in vitro research. However, currently available methods for quantifying GJIC with higher-throughputs typically require specialized equipment, proprietary software and/or genetically engineered cell models.
View Article and Find Full Text PDFCyanobacterial toxin cylindrospermopsin (CYN) is an emerging freshwater contaminant, whose expanding environmental occurrence might result into increased human health risks. CYN is potent hepatotoxin, with cytotoxicity and genotoxicity documented in primary hepatocytes or hepatoma cell lines. However, there is only limited information about CYN effects on adult human liver stem cells (LSCs), which play an important role in liver tissue development, regeneration and repair.
View Article and Find Full Text PDFAmbient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes.
View Article and Find Full Text PDF