Bioresour Technol
November 2024
The present research employs a pilot-scale selective electrodialysis system to treat liquid digestate, fractionating nutrient ions and exploring fertilizer creation via ammonia stripping and phosphorus precipitation, while studying pharmaceutical transport behavior and examining membrane fouling. The influence of diverse potentials was studied in simulated and real digestate, with 30 V application proven more efficient overall. Applying consecutive runs resulted in products that were 7.
View Article and Find Full Text PDFThe basic principles of a steady-state mass transfer model and the resistance-in-series film model are assessed with the aid of a series of experiments in a gas-liquid contact membrane mini-module (3 M Liqui-Cel MM-1.7 × 5.5) using an aqueous solution of diethanolamine (DEA) of 0.
View Article and Find Full Text PDFA combination of membrane processes was applied to treat the digestate produced after the anaerobic treatment of pig manure in a biogas plant, aiming towards the recovery of nutrients and effective water treatment for potential reuse. Initially, coarse filtration (sieving and microfiltration) was used to remove particles larger than 1 µm, followed by ultrafiltration, to reduce the suspended solids concentrations below 1 g/L. Subsequently, selective electrodialysis is employed to recover the main nutrient ions, primarily ammonium and potassium.
View Article and Find Full Text PDFA series of technologies have been employed in pilot-scale to process digestate, i.e. the byproduct remaining after the anaerobic digestion of agricultural and other wastes, with the aim of recovering nutrients and reducing the load of solids and organics from it, hence improving the quality of digestate for potential subsequent reuse.
View Article and Find Full Text PDFThis study aims at developing a kinetic model that can adequately describe solar thermochemical water and carbon dioxide splitting with nickel ferrite powder as the active redox material. The kinetic parameters of water splitting of a previous study are revised to include transition times and new kinetic parameters for carbon dioxide splitting are developed. The computational results show a satisfactory agreement with experimental data and continuous multicycle operation under varying operating conditions is simulated.
View Article and Find Full Text PDF