This study investigates essential (Mg, Ca, Fe, Mn, Cu, Zn, Se, Ni) and non-essential (Li, Be, Cr, Rb, Sr, Cs, Cd, Sn, Ba, and Pb) element concentrations and stable isotope (δC, δN, δS) compositions in feathers of Brown Boobies (Sula leucogaster) from three distinct Atlantic islands: the Archipelagos of Saint Peter and Saint Paul (SPSP), Abrolhos, and Cagarras. We aimed to investigate the ecological and environmental factors influencing these seabird populations and assess potential variations in contaminant exposure and dietary habits based on location, sex, and maturity stages. Our finding revealed significant geographical differences in trace element concentrations.
View Article and Find Full Text PDFGlacier mice are peculiar rolling or stationary moss balls found on the surface of some glaciers. They may harbour an ecological habitat for cold-adapted invertebrates and microorganisms, but little is known about their potential to accumulate and disseminate harmful elements and substances. In this study, we investigate the presence of fallout radionuclides (Cs, Pu, Pu, Pu, Pb) and heavy metals (Pb, As, Hg, Cd) in glacier mice and compare the results to bryophytes from adjacent glacier ecosystems.
View Article and Find Full Text PDFCompared to other organic contaminants, birds are rarely studied for their exposure to polycyclic aromatic hydrocarbons (PAHs), mainly due to their effective metabolization of parent PAHs. However, as some studies suggest, exposure to PAHs may result in adverse health effects including decreased survival, especially following oil spills. In the present study, we analyzed samples from a sea duck, the common eider Somateria mollissima including feathers, preen oil, blood, liver and bile, to evaluate whether non- lethally collected samples could be reliably used for avian biomonitoring strategies.
View Article and Find Full Text PDFChemical pollution is a global concern as contaminants are transported and reach even the remote regions of Antarctica. Seabirds serve as important sentinels of pollution due to their high trophic position and wide distribution. This study examines the influence of migration and trophic ecology on the exposure of two Antarctic seabirds, Wilson's storm petrel (Oceanites oceanicus - Ooc), and Cape petrel (Daption capense - Dca), to chemical elements and perfluoroalkyl substances (PFAS).
View Article and Find Full Text PDFThe Arctic region is undergoing rapid and extensive transformations due to global climate change. This study investigated the spatial distribution of 31 chemical elements in eight locations in Billefjord, Svalbard, Arctic, with varying degrees of anthropogenic and glacial influences. The west coast of Billefjord has experienced a greater historical anthropogenic impact, while the east coast has larger glaciers and shows less visible evidence of direct human impact.
View Article and Find Full Text PDFAlthough naturally present in the environment, mercury (Hg) input is significantly amplified by anthropogenic activities on a global scale, leading to a growing concern about the recent increase in Hg levels observed in Antarctica. This study investigated total mercury (THg) concentrations in feathers and eggs of resident and migratory Antarctic seabirds. Stable isotope data (δN, δC, and δS) were employed to ascertain the key factors influencing the exposure of these species to Hg.
View Article and Find Full Text PDFThe Arctic region is threatened by climate change and pollution caused by human activities which potentially influence the elemental concentrations available to and from the biota. To better understand this delicate balance, it is crucial to investigate the role of several factors. Therefore, we quantified the level of 43 chemical elements in soils from Elsa and Ebba Valleys, Petunia Bay, Spitsbergen, a region that has experienced lasting environmental impacts from historical mining activities.
View Article and Find Full Text PDFCryoconite is a mixture of mineral and organic material covering glacial ice, playing important roles in biogeochemical cycles and lowering the albedo of a glacier surface. Understanding the differences in structure of cryoconite across the globe can be important in recognizing past and future changes in supraglacial environments and ice-organisms-minerals interactions. Despite the worldwide distribution and over a century of studies, the basic characteristics of cryoconite, including its forms and geochemistry, remain poorly studied.
View Article and Find Full Text PDF