Publications by authors named "Souvagya Biswas"

()-2-Trialkylsilyloxy-1,3-dienes and the corresponding 2-acetoxy derivatives participate in cobalt-catalyzed heterodimerization reactions with ethylene, giving mostly 4,1-hydrovinylation products with addition of the vinyl group to C and H at C of the diene. The reaction, which gives highly functionalized, protected enolates, is best carried out at room temperature with the diene dissolved in methylene chloride and ethylene delivered from a balloon in the presence of a catalyst generated in situ by the reaction of (P~P)CoCl with methylaluminoxane (MAO). Commercially available chiral ligands, 2,3--isopropylidene-2,3-dihydroxy-1,4--(diphenylphosphino)butane (DIOP) and 2,4--diphenylphosphinopentane (BDPP) in combination with the earth-abundant metal cobalt, gave excellent regio- and enantio-selectivities (up to 99% ee) for the chiral enolate surrogates from both silyloxy and acetoxydienes.

View Article and Find Full Text PDF

One of the major challenges facing organic synthesis in the 21st century is the utilization of abundantly available feedstock chemicals for fine chemical synthesis. Regio- and enantioselective union of easily accessible 1,3-dienes and other feedstocks like ethylene, alkyl acrylates, and aldehydes can provide valuable building blocks adorned with latent functionalities for further synthetic elaboration. Through an approach that relies on mechanistic insights and systematic examination of ligand and counterion effects, we developed an efficient cobalt-based catalytic system [()CoX/MeAl] ( = bisphosphine) to effect the first enantioselective heterodimerization of several types of 1,3-dienes with ethylene.

View Article and Find Full Text PDF

A stereogenic center, placed at an exocyclic location next to a chiral carbon in a ring to which it is attached, is a ubiquitous structural motif seen in many bioactive natural products, including di- and triterpenes and steroids. Installation of these centers has been a long-standing problem in organic chemistry. Few classes of compounds illustrate this problem better than serrulatanes and amphilectanes, which carry multiple methyl-bearing exocyclic chiral centers.

View Article and Find Full Text PDF

Reported is the first enantioselective oxidative Pummerer-type transformation using phase-transfer catalysis to deliver enantioenriched sulfur-bearing heterocycles. This reaction includes the direct oxidation of sulfides to a thionium intermediate, followed by an asymmetric intramolecular nucleophilic addition to form chiral cyclic N,S-acetals with moderate to high enantioselectivites. Deuterium-labelling experiments were performed to identify the stereodiscrimination step of this process.

View Article and Find Full Text PDF

While attempting to effect Co-catalyzed hydrosilylation of β-vinyl trimethylsilyl enol ethers we discovered that depending on the silane, solvent and the method of generation of the reduced cobalt catalyst, a highly efficient and selective reduction or hydrosilylation of an alkene can be achieved. This paper deals with this reduction reaction, which has not been reported before in spite of the huge research activity in this area. The reaction, which uses an air-stable [2,6-di(aryliminoyl)pyridine)]CoCl activated by 2 equivalents of NaEtBH as a catalyst (0.

View Article and Find Full Text PDF

Trialkylsilyl enol ethers are versatile intermediates often used as enolate surrogates for the synthesis of carbonyl compounds. Yet there are no reports of broadly applicable, catalytic methods for the synthesis of chiral silyl enol ethers carrying latent functionalities useful for synthetic operations beyond the many possible reactions of the silyl enol ether moiety itself. Here we report a general procedure for highly catalytic (substrate:catalyst ratio up to 1000:1) and enantioselective (92% to 98% major enantiomer) synthesis of such compounds bearing a vinyl group at a chiral carbon at the β-position.

View Article and Find Full Text PDF

Substitution of one of the phenyl groups of triphenylphosphine with a 2-benzyloxy-, 2-benzyloxymethyl- or 2-benzyloxyethyl-phenyl moiety results in a set of simple ligands, which exhibit strikingly different behaviour in various nickel(II)-catalyzed olefin dimerization reactions. Complexes of ligands with 2-benzyloxyphenyl-, 2-benzyloxymethylphenyl-diphenylphosphine ( and respectively) are most active for hydrovinylation (HV) of vinylarenes, with the former leading to extensive isomerization of the primary 3-aryl-1-butenes into the conjugated 2-aryl-2-butenes even at -55 °C. However, 2-benzyloxymethyl-substituted ligand is slightly less active, leading up to quantitative yields of the primary products of HV at ambient temperature with no trace of isomerization, thus providing the best option for a practical synthesis of these compounds.

View Article and Find Full Text PDF

In the asymmetric hydrovinylation (HV) of an E/Z-mixture of a prototypical 1,3-diene with (S,S)-(DIOP)CoCl2 or (S,S)-(BDPP)CoCl2 catalyst in the presence of Me3Al, the (E)-isomer reacts significantly faster, leaving behind the Z-isomer intact at the end of the reaction. The presumed [LCo-H](+)-intermediate, especially when L is a large-bite angle ligand, similar to DIOP and BDPP, promote an unusual isomerization of (E/Z)-mixtures of 1,3-dienes to isomerically pure Z-isomers. A mechanism that involves an intramolecular hydride addition via an [η(4)-(diene)(LCo-H)](+) complex, followed by π-σ-π isomerization of the intermediate Co(allyl) species, is proposed for this reaction.

View Article and Find Full Text PDF