Maintaining healthy body weight is increasingly difficult in our obesogenic environment. Dieting efforts are often overpowered by the internal drive to consume energy-dense foods. Although the selection of calorically rich substrates over healthier options is identifiable across species, the mechanisms behind this choice remain poorly understood.
View Article and Find Full Text PDFMany RNAs cause disease; however, RNA is rarely exploited as a small-molecule drug target. Our programmatic focus is to define privileged RNA motif small-molecule interactions to enable the rational design of compounds that modulate RNA biology starting from only sequence. We completed a massive, library-versus-library screen that probed over 50 million binding events between RNA motifs and small molecules.
View Article and Find Full Text PDFMicrobiological hazards can occur when foodstuffs come into contact with contaminated surfaces or infectious agents dispersed by air currents in the manufacturing environment. An environmental monitoring program (EMP) is a critical aspect of sustainable and safe food manufacturing used to evaluate the effectiveness of the microbial controls in place. An effective EMP should be based on risk analysis, taking into account previous sampling history to determine the selection of the sampling points, the scope of the test, and the frequency of analysis.
View Article and Find Full Text PDFObjective: The peroxisome proliferator-activated receptor-γ coactivator-1α1 (PGC-1α1) regulates genes involved in energy metabolism. Increasing adipose tissue energy expenditure through PGC-1α1 activation is potentially beneficial for systemic metabolism. Pharmacological PGC-1α1 activators could be valuable tools in the fight against obesity and metabolic disease.
View Article and Find Full Text PDFRNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules.
View Article and Find Full Text PDFThe development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data.
View Article and Find Full Text PDFOur understanding of the complex, transcriptional feedback loops in the circadian clock mechanism has depended upon quantitative, timeseries data from disparate sources. We measure clock gene RNA profiles in Arabidopsis thaliana seedlings, grown with or without exogenous sucrose, or in soil-grown plants and in wild-type and mutant backgrounds. The RNA profiles were strikingly robust across the experimental conditions, so current mathematical models are likely to be broadly applicable in leaf tissue.
View Article and Find Full Text PDFThere are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable".
View Article and Find Full Text PDFPlatelet-activating factor acetylhydrolases (PAFAHs) 1b2 and 1b3 are poorly characterized serine hydrolases that form a complex with a noncatalytic protein (1b1) to regulate brain development, spermatogenesis, and cancer pathogenesis. Determining physiological substrates and biochemical functions for the PAFAH1b complex would benefit from selective chemical probes that can perturb its activity in living systems. Here, we report a class of tetrahydropyridine reversible inhibitors of PAFAH1b2/3 discovered using a fluorescence polarization-activity-based protein profiling (fluopol-ABPP) screen of the NIH 300,000+ compound library.
View Article and Find Full Text PDFBARD, the BioAssay Research Database (https://bard.nih.gov/) is a public database and suite of tools developed to provide access to bioassay data produced by the NIH Molecular Libraries Program (MLP).
View Article and Find Full Text PDFThe stomach hormone ghrelin and hypothalamic melanocortin neurons belong to a gut-brain circuit controlling appetite and metabolic homeostasis. Mice lacking melanocortin-3 receptor (Mc3rKO) or growth hormone secretagogue receptor (GhsrKO) genes exhibit attenuated food anticipatory activity (FAA), a rise in locomotor activity anticipating mealtime, suggesting common circuitry regulating anticipatory responses to nutrient loading. To investigate the interaction between Ghsrs and Mc3rs, we compared food anticipatory responses in GhsrKO, Mc3rKO, and double Ghsr;Mc3r knockout (DKO) mice subjected to a hypocaloric restricted feeding (RF) protocol in constant dark or 12-hour light, 12-hour dark settings.
View Article and Find Full Text PDFChimeric oncoproteins created by chromosomal translocations are among the most common genetic mutations associated with tumorigenesis. Malignant mucoepidermoid salivary gland tumors, as well as a growing number of solid epithelial-derived tumors, can arise from a recurrent t (11, 19)(q21;p13.1) translocation that generates an unusual chimeric cAMP response element binding protein (CREB)-regulated transcriptional coactivator 1 (CRTC1)/mastermind-like 2 (MAML2) (C1/M2) oncoprotein comprised of two transcriptional coactivators, the CRTC1 and the NOTCH/RBPJ coactivator MAML2.
View Article and Find Full Text PDFRecent industry-academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded "open-access" and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data.
View Article and Find Full Text PDFIdentifying errors and alternate conformers and modeling multiple main-chain conformers in poorly ordered regions are overarching problems in crystallographic structure determination that have limited automation efforts and structure quality. Here, we show that implementation of a full factorial designed set of standard refinement approaches, termed ExCoR (Extensive Combinatorial Refinement), significantly improves structural models compared to the traditional linear tree approach, in which individual algorithms are tested linearly and are only incorporated if the model improves. ExCoR markedly improved maps and models and reveals building errors and alternate conformations that were masked by traditional refinement approaches.
View Article and Find Full Text PDFCircadian clocks synchronise biological processes with the day/night cycle, using molecular mechanisms that include interlocked, transcriptional feedback loops. Recent experiments identified the evening complex (EC) as a repressor that can be essential for gene expression rhythms in plants. Integrating the EC components in this role significantly alters our mechanistic, mathematical model of the clock gene circuit.
View Article and Find Full Text PDFSummary: Promiscuity counts allow for a better understanding of a compound's assay activity profile and drug potential. Although PubChem contains a vast amount of compound and assay data, it currently does not have a convenient or efficient method to obtain in-depth promiscuity counts for compounds. PubChem promiscuity fills this gap.
View Article and Find Full Text PDFHigh-throughput screening data repositories, such as PubChem, represent valuable resources for the development of small-molecule chemical probes and can serve as entry points for drug discovery programs. Although the loose data format offered by PubChem allows for great flexibility, important annotations, such as the assay format and technologies employed, are not explicitly indexed. The authors have previously developed a BioAssay Ontology (BAO) and curated more than 350 assays with standardized BAO terms.
View Article and Find Full Text PDFThe circadian clock provides robust, ∼24 hr biological rhythms throughout the eukaryotes. The clock gene circuit in plants comprises interlocking transcriptional feedback loops, reviewed in [1], whereby the morning-expressed transcription factors CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) repress the expression of evening genes, notably TIMING OF CAB EXPRESSION 1 (TOC1). EARLY FLOWERING 3 (ELF3) has been implicated as a repressor of light signaling to the clock [2, 3] and, paradoxically, as an activator of the light-induced genes CCA1 and LHY [4, 5].
View Article and Find Full Text PDFUnlabelled: PubChem is a public repository of chemical structures and associated biological activities. The PubChem BioAssay database contains assay descriptions, conditions and readouts and biological screening results that have been submitted by the biomedical research community. The PubChem web site and Power User Gateway (PUG) web service allow users to interact with the data and raw files are available via FTP.
View Article and Find Full Text PDFKinases are important drug discovery targets for a wide variety of therapeutic indications; consequently, the measurement of kinase activity remains a common high-throughput screening (HTS) application. Recently, enzyme-coupled luciferase-kinase (LK) format assays have been introduced. This format measures luminescence resulting from metabolism of adenosine triphosphate (ATP) via a luciferin/luciferase-coupled reaction.
View Article and Find Full Text PDFThe peroxisome proliferator-activated receptor is a member of the nuclear receptor superfamily of transcriptional regulators. Regulation of the nuclear receptors occurs through changes to the structure and dynamics of the ligand-binding domain. Therefore, the need has arisen for a rapid method capable of detecting changes in the dynamics of nuclear receptors following ligand binding.
View Article and Find Full Text PDFBackground: The combination of mass spectrometry and solution phase amide hydrogen/deuterium exchange (H/D exchange) experiments is an effective method for characterizing protein dynamics, and protein-protein or protein-ligand interactions. Despite methodological advancements and improvements in instrumentation and automation, data analysis and display remains a tedious process. The factors that contribute to this bottleneck are the large number of data points produced in a typical experiment, each requiring manual curation and validation, and then calculation of the level of backbone amide exchange.
View Article and Find Full Text PDFA nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARgamma), is a ligand-dependent transcription factor involved in glucose homeostasis and adipocyte differentiation. PPARgamma is the molecular target of various natural and synthetic molecules, including anti-diabetic agents such as rosiglitazone. Amide hydrogen/deuterium-exchange (H/D-Ex), coupled with proteolysis and mass spectrometry, was applied to study the dynamics of the PPARgamma ligand binding domain (LBD) with or without molecules that modulate PPARgamma activity.
View Article and Find Full Text PDFLuciferase is the ideal reporter gene to provide temporal and spatial information on promoter activity in Arabidopsis and other eukaryotes; the noninvasive detection of luminescence and short half-life of luciferase activity allow repeated measurements of individual seedlings over several days to assay dynamic changes in gene expression. Transgenic or transiently transformed plants with a luciferase gene under the control of a promoter of interest are required. Detection of the low level of luminescence produced by the luciferase gene in Arabidopsis requires the use of low light detecting charge-coupled device (CCD) cameras or scintillation counters.
View Article and Find Full Text PDF