Publications by authors named "Souroprobho Chowdhury"

Guanine-rich DNA sequences are known to fold into secondary structures called G-quadruplexes (G4s), which can form from either individual DNA strands (intra-molecular) or multiple DNA strands (inter-molecular, iG4s). Intra-molecular G4s have been the object of extensive biological investigation due to their enrichment in gene-promoters and telomers. On the other hand, iG4s have never been considered in biological contexts, as the interaction between distal sequences of DNA to form an iG4 in cells was always deemed as highly unlikely.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology.

View Article and Find Full Text PDF

Guanine-rich DNA can fold into secondary structures known as G-quadruplexes (G4s). G4s can form from a single DNA strand (intramolecular) or from multiple DNA strands (intermolecular), but studies on their biological functions have been often limited to intramolecular G4s, owing to the low probability of intermolecular G4s to form within genomic DNA. Herein, we report the first example of an endogenous protein, Cockayne Syndrome B (CSB), that can bind selectively with picomolar affinity toward intermolecular G4s formed within rDNA while displaying negligible binding toward intramolecular structures.

View Article and Find Full Text PDF

G-quadruplexes are nucleic acids secondary structures that can be formed in guanine-rich sequences. More than 30 years ago, their formation was first observed in telomeric DNA. Since then, a number of other sequences capable of forming G-quadruplex structures have been described and increasing evidence supporting their formation in the context of living cells has been accumulated.

View Article and Find Full Text PDF