In this study we have synthesized polystyrene based plastic scintillators (PS) loaded with commercially available fluorophores like p-Terphenyl and 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP). Optimum concentration of the fluorophores in the synthesized PS was determined. The PS exhibited 1.
View Article and Find Full Text PDFDefects and disorder work as controlling parameters to alter the electronic structure of nanostructures and significantly influence their electronic, magnetic, and nonlinear optical (NLO) properties. In this study, we found that defect engineering is an effective strategy for tailoring the linear and nonlinear optical properties of Cu-doped titanium oxide (TiO) flower-shaped nanostructures. The concentration of chemical doping of Cu in the TiO lattice creates intermediate defect states that impact electronic bandgap reduction and tunable defect luminescence.
View Article and Find Full Text PDFIntrinsic defects created by chemically inert gas (Xe) ion implantation in vertically grown ZnO nanorods are studied by optical and X-ray absorption spectroscopy (XAS). The surface defects produced due to dynamic sputtering by ion beams control the fraction of O and Zn with ion fluence, which helps in tuning the optoelectronic properties. The forbidden Raman modes related to Zn interstitials and oxygen vacancies are observed because of the weak Fröhlich interaction, which arises due to disruption of the long-range lattice order.
View Article and Find Full Text PDF