The prokaryotic ATP-dependent ClpP protease, localized in the relict plastid of malaria parasite, represents a potential drug target. In the present study, we utilized in silico structure-based screening and medicinal chemistry approaches to identify a novel pyrimidine series of compounds inhibiting P. falciparum ClpP protease activity and evaluated their antiparasitic activities.
View Article and Find Full Text PDFFalcipain-2 is a papain family cysteine protease and an emerging antimalarial drug target. A pseudo-tripeptide scaffold I was designed using in silico screening tools and the three dimensional structures of falcipain-2, falcipain-3, and papain. This scaffold was investigated at four positions, T1, T2, T3, and T3', with various targeted substitutions to understand the structure-activity relationships.
View Article and Find Full Text PDFODCase is a highly proficient enzyme responsible for the decarboxylation of orotidine monophosphate to generate uridine monophosphate. ODCase has attracted early attention due to its interesting mechanism of catalysis. In order to exploit therapeutic advantages due to the inhibition of ODCase, one must have selective inhibitors of this enzyme from the pathogen, or a dysregulated molecular mechanism involving ODCase.
View Article and Find Full Text PDFEmploying a ligand-based approach, 3-methoxyquinoxalin-2-carboxamides were designed as serotonin type-3 (5-HT(3) ) receptor antagonists and synthesized from the starting material o-phenylenediamine in a sequence of reactions. The structures of the synthesized compounds were confirmed by spectral data. These carboxamides were investigated for their 5-HT(3) receptor antagonisms in longitudinal muscle myenteric plexus preparations from guinea-pig ileum against a standard 5-HT(3) agonist, 2-methy-5-HT, and their antagonism activities are expressed as pA(2) values.
View Article and Find Full Text PDF