Protein aggregation and the abnormal accumulation of aggregates are considered as common mechanisms of neurodegeneration such as Parkinson's disease (PD). Ursolic acid (UA), a natural pentacyclic triterpenoid compound, has shown a protective activity in several experimental models of brain dysfunction through inhibiting oxidative stress and inflammatory responses and suppressing apoptotic signaling in the brain. In this study, we investigated whether UA promoted autophagic clearance of protein aggregates and attenuated the pathology and characteristic symptoms in PD mouse model.
View Article and Find Full Text PDFTrehalose has been recently revealed as an attractive candidate to prevent and modify Parkinson's disease (PD) progression by regulating autophagy; however, studies have only focused on the reduction of motor symptoms rather than the modulation of disease course from prodromal stage. This study aimed to evaluate whether trehalose has a disease-modifying effect at the prodromal stage before the onset of a motor deficit in 8-week-old male C57BL/6 mice exposed to rotenone. We found significant decrease in tyrosine hydroxylase immunoreactivity in the substantia nigra and motor dysfunction after 2 weeks rotenone treatment.
View Article and Find Full Text PDFAmitriptyline is a tricyclic antidepressant commonly prescribed for major depressive disorders, as well as depressive symptoms associated with various neurological disorders. A possible correlation between the use of tricyclic antidepressants and the occurrence of Parkinson's disease has been reported, but its underlying mechanism remains unknown. The accumulation of misfolded protein aggregates has been suggested to cause cellular toxicity and has been implicated in the common pathogenesis of neurodegenerative diseases.
View Article and Find Full Text PDF