Indian J Med Res
November 2014
In recent times, infertility among both man and woman has become a major concern affecting about 20 per cent of the population worldwide and has been attributed in part to several aetiological factors such as changes in lifestyle, which includes sedentary life, dietary habits, sleep anomalies, environmental pollution, etc. Assisted reproductive technologies (ART) have come to the rescue of many such couples, but presence of metabolic disorders such as obesity, diabetes with insulin resistance (IR) and its secondary complications (micro- and macro-vascular complications), become confounders to the outcome of ART. Cell therapies are arising as a new hope in the management of reproductive disorders and currently, the efficacy of mesenchymal stem cells (MSCs) harvested from the adult sources finds wide application in the management of diseases like stroke, neuropathy, nephropathy, myopathy, wounds in diabetes, etc.
View Article and Find Full Text PDFAlterations in pancreatic milieu to adapt to physiological shifts occurring in conditions of obesity and metabolic syndrome (MS) have been documented, though mechanisms leading to such a state have remained elusive so far. The data presented here tries to look at the gravity of metabolic insult during the early and prolonged phases of obesity/insulin resistance (IR) depicted in WNIN/Ob strain of rats-an obese euglycemic mutant rat model developed indigenously at our institute which is highly vulnerable for a variety of degenerative diseases. The present results in situ show the participation of several confounding factors in the pancreatic milieu that collectively coprecipitates for a state of profound inflammation in the pancreas (among Mutant compared to Lean/Control) which gets worsened with age.
View Article and Find Full Text PDFBackground: Development of model systems have helped to a large extent, in bridging gap to understand the mechanism(s) of disease including diabetes. Interestingly, WNIN/GR-Ob rats (Mutants), established at National Centre for Laboratory Animals (NCLAS) of National Institute of Nutrition (NIN), form a suitable model system to study obesity with Type 2 diabetes (T2D) demonstrating several secondary complications (cataract, cardiovascular complications, infertility, nephropathy etc). The present study has been carried out to explore the potent application(s) of multipotent stem cells such as bone marrow mesenchymal stem cells (BM-MSCs), to portray features of pre-diabetic/T2D vis-à-vis featuring obesity, with impaired glucose tolerance (IGT), hyperinsulinemia (HI) and insulin resistance (IR) seen with Mutant rats akin to human situation.
View Article and Find Full Text PDFCorneal opacification due to limbal stem cell deficiency (LSCD) is an important cause for ocular morbidity, resulting from a number of intrinsic and extrinsic factors. While the extrinsic factors include conditions such as chemical or thermal injuries, intrinsic include dysfunction, or reduction in the number of stem cells either due to pathological changes in autoimmune diseases or secondary to certain clinical conditions such as diabetes, dry eye disorders, or multiple previous eye surgeries. LSCD is characterized by a classic triad of signs -- conjunctivalization, neovascularization and decrease in vision.
View Article and Find Full Text PDFPurpose: Mesenchymal stem cells (MSC) are self-renewing, multipotent cells that are present in many adult tissues, including bone marrow, trabecular bone, adipose, and muscle. The presence of such cells of mesenchymal origin and their role during the wound healing of ocular injuries are currently being explored by many studies worldwide. In this study, we aimed to report the presence of mesenchymal cells resembling bone marrow-derived cells (MSC-BM) in the limbus of the human eye.
View Article and Find Full Text PDFPurpose: To culture oral mucosal epithelial cells on deepithelialized human amniotic membrane without the use of feeder cells and to compare the characteristics of cultured oral cells with cultured limbal and conjunctival epithelial cells for use in ocular surface reconstruction.
Methods: Oral biopsies were obtained from healthy volunteers after informed consent and were cultured on deepithelialized amniotic membrane for three to four weeks. Confluent cultures of limbal, oral, and conjunctival cells were subjected to characterization of markers of stem cells and of epithelial differentiation by reverse-transcription polymerase chain reaction (RT-PCR) and by immunohistochemistry.