Publications by authors named "Souna M Elwary"

Vitiligo is characterized by a mostly progressive loss of the inherited skin color. The cause of the disease is still unknown, despite accumulating in vivo and in vitro evidence of massive oxidative stress via hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)) in the skin of affected individuals. The most favored hypothesis is based on autoimmune mechanisms.

View Article and Find Full Text PDF

Xanthine dehydrogenase/xanthine oxidase (XDH/XO) catalyses the hydroxylation of hypoxanthine to xanthine and finally to uric acid in purine degradation. These reactions generate H(2)O(2) yielding allantoin from uric acid when reactive oxygen species accumulates. The presence of XO in the human epidermis has not been shown so far.

View Article and Find Full Text PDF

The human epidermis holds the capacity for autocrine cholinergic signal transduction, but the presence of butyrylcholinesterase (BchE) has not been shown so far. Our results demonstrate that this compartment transcribes a functional BchE. Its activity is even higher compared to acetylcholinesterase (AchE).

View Article and Find Full Text PDF

The human epidermis holds the full machinery for cholinergic signal transduction. However, the presence of the vesicular transporter (vesicular acetylcholine (ACh) transporter (VAChT)) for both choline and ACh has never been shown in this compartment. The results of this study confirm the presence of VAChT in cutaneous nerves and in both epidermal melanocytes and keratinocytes as well as in their nuclei using immunofluorescence labelling in situ and in vitro, Western blot analysis of cellular and nuclear extracts and reverse transcription-PCR.

View Article and Find Full Text PDF

To date there is ample in vivo and in vitro evidence for increased epidermal and systemic hydrogen peroxide (H(2)O(2)) levels in vitiligo, which can be reduced with a topical application of a pseudocatalase-K.U. Schallreuter (PC-KUS) leading to the recovery of epidermal catalase levels as well as other enzymes in peripheral blood cells.

View Article and Find Full Text PDF

Previously it has been demonstrated that the human epidermis synthesises and degrades acetylcholine and expresses both muscarinic and nicotinic receptors. These cholinergic systems have been implicated in the development of the epidermal calcium gradient and differentiation in normal healthy skin. In vitiligo severe oxidative stress occurs in the epidermis of these patients with accumulation of H2O2 in the 10(-3)M range together with a decrease in catalase expression/activity due to deactivation of the enzyme active site.

View Article and Find Full Text PDF