Inhibitors of integrin αVβ3 have therapeutic promise for a variety of diseases. Most αVβ3-targeting small molecules patterned after the RGD motif are partial agonists because they induce a high-affinity, ligand-binding conformation and prime the receptor to bind the ligand without an activating stimulus, in part a charge-charge interaction between their aspartic acid carboxyl group and the metal ion in the metal-ion-dependent adhesion site (MIDAS). Building upon our previous studies on the related integrin αIIbβ3, we searched for pure αVβ3 antagonists that lack this typical aspartic acid carboxyl group and instead engage through direct binding to one of the coordinating residues of the MIDAS metal ion, specifically β3 E220.
View Article and Find Full Text PDFAlzheimer's Disease (AD) is the most common neurodegenerative disease, and efficient therapeutic and early diagnostic agents for AD are still lacking. Herein, we report the development of a novel amphiphilic compound, LS-4, generated by linking a hydrophobic amyloid-binding distyrylbenzene fragment with a hydrophilic triazamacrocycle, which dramatically increases the binding affinity toward various amyloid β (Aβ) peptide aggregates, especially for soluble Aβ oligomers. Moreover, upon the administration of LS-4 to 5xFAD mice, fluorescence imaging of LS-4-treated brain sections reveals that LS-4 can penetrate the blood-brain barrier and bind to the Aβ oligomers .
View Article and Find Full Text PDFCarbon dioxide (CO) movement across cellular membranes is passive and governed by Fick's law of diffusion. Until recently, we believed that gases cross biological membranes exclusively by dissolving in and then diffusing through membrane lipid. However, the observation that some membranes are CO impermeable led to the discovery of a gas molecule moving through a channel; namely, CO diffusion through aquaporin-1 (AQP1).
View Article and Find Full Text PDFBlocking the formation, growth, and breaking of amyloid fibrils by synthetic nanosystems could provide a treatment of neurodegenerative diseases. With this in mind, here atomistic molecular dynamics simulations are used to screen for nanoparticles (NPs), covered with different mixtures of ligands, including positively and negatively charged ligands, Aβ40-cut-peptide, and synthetic inhibitor ligands, in their selective coupling to Aβ40 peptides and their fibrils. The simulations reveal that only Aβ40-cut-peptide-covered NPs have strong and selective coupling to Aβ40 monomers.
View Article and Find Full Text PDFNanomedicines are typically formed by nanocarriers which can deliver in a targeted manner drugs poorly soluble in blood, increase their therapeutic activities, and reduce their side effects. Many tested nanomedicines are formed by lipids, polymers, and other amphiphilic molecules isolated or self-assembled into various complexes and micelles, functionalized nanoparticles, and other bio-compatible composite materials. Here, we show how atomistic molecular dynamics simulations can be used to characterize and optimize the structure, stability, and activity of selected nanomedicines.
View Article and Find Full Text PDFViral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs).
View Article and Find Full Text PDFThe ability of semiconductor nanoparticles (NPs) to self-assemble has been known for several decades. However, the limits of the geometrical and functional complexity for the self-assembled nanostructures made from simple often polydispersed NPs are still continuing to amaze researchers. We report here the self-assembly of primary ∼2-4 nm FeSe NPs with puck-like shapes into either (a) monocrystalline nanosheets ∼5.
View Article and Find Full Text PDFCombining biomolecules such as enzymes with nanoparticles has much to offer for creating next generation synergistically functional bionanomaterials. However, almost nothing is known about how these two disparate components interact at this critical biomolecular-materials interface to give rise to improved activity and emergent properties. Here we examine how the nanoparticle surface can influence and increase localized enzyme activity using a designer experimental system consisting of trypsin proteolysis acting on peptide-substrates displayed around semiconductor quantum dots (QDs).
View Article and Find Full Text PDFWet chemical etching is a key process in fabricating silicon (Si) nanostructures. Currently, wet etching of Si is proposed to occur through the reaction of surface Si atoms with etchant molecules, forming etch intermediates that dissolve directly into the bulk etchant solution. Here, using in situ transmission electron microscopy (TEM), we follow the nanoscale wet etch dynamics of amorphous Si (a-Si) nanopillars in real-time and show that intermediates generated during alkaline wet etching first aggregate as nanoclusters on the Si surface and then detach from the surface before dissolving in the etchant solution.
View Article and Find Full Text PDFThe nucleation and growth of solids from solutions impacts many natural processes and is fundamental to applications in materials engineering and medicine. For a crystalline solid, the nucleus is a nanoscale cluster of ordered atoms that forms through mechanisms still poorly understood. In particular, it is unclear whether a nucleus forms spontaneously from solution via a single- or multiple-step process.
View Article and Find Full Text PDFCurvature-induced dipole moment and orbital rehybridization in graphene wrinkles modify its electrical properties and induces transport anisotropy. Current wrinkling processes are based on contraction of the entire substrate and do not produce confined or directed wrinkles. Here we show that selective desiccation of a bacterium under impermeable and flexible graphene via a flap-valve operation produces axially aligned graphene wrinkles of wavelength 32.
View Article and Find Full Text PDFEngineering controllable cellular interactions into nanoscale drug delivery systems is key to enable their full potential. Here, using folic acid (FA) as a model targeting ligand and dendron micelles (DM) as a nanoparticle (NP) platform, we present a comprehensive experimental and modeling investigation of the structural properties of DMs that govern the formation of controllable, FA-mediated cellular interactions. Our experimental results demonstrate that a high level of control over the specific cell interactions of FA-targeted DMs can be achieved through modulation of the PEG corona length and the FA content.
View Article and Find Full Text PDFWe have developed an ultrasensitive gas-detection method based on the measurement of a differential capacitance of electrified ionic liquid (IL) electrode interfaces in the presence and absence of adsorbed gas molecules. The observed change of differential capacitance has a local maximum at a certain potential that is unique for each type of gas, and its amplitude is related to the concentration of the gas molecules. We establish and validate this gas-sensing method by characterizing SO2 detection at ppb levels with less than 1.
View Article and Find Full Text PDFThe chemical behaviour of molecules can be significantly modified by confinement to volumes comparable to the dimensions of the molecules. Although such confined spaces can be found in various nanostructured materials, such as zeolites, nanoporous organic frameworks and colloidal nanocrystal assemblies, the slow diffusion of molecules in and out of these materials has greatly hampered studying the effect of confinement on their physicochemical properties. Here, we show that this diffusion limitation can be overcome by reversibly creating and destroying confined environments by means of ultraviolet and visible light irradiation.
View Article and Find Full Text PDFMicelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases.
View Article and Find Full Text PDFTo systematically investigate the relationship among surface charge, PEG chain length, and nano-bio interactions of dendron-based micelles (DMs), a series of PEGylated DMs with various end groups (-NH, -Ac, and -COOH) and PEG chain lengths (600 and 2000 g/mol) are prepared and tested . The DMs with longer PEG chains (DM) do not interact with cells despite their positively charged surfaces. In sharp contrast, the DMs with shorter PEG chains (DM) exhibit charge-dependent cellular interactions, as observed in both and molecular dynamics (MD) simulation results.
View Article and Find Full Text PDFPurpose: An oligonucleotide termed 'T-oligo' having sequence homology with telomere overhang has shown cytotoxicity in multiple cancers. We have demonstrated that T-oligo can induce apoptosis in androgen independent prostate cancer cell line DU-145. In this report, we evaluate the use of star-shaped tetraspermine (SSTS) for delivery of T-oligo.
View Article and Find Full Text PDF