Aim: This in vitro study compared the effect of two commercially available silver diamine fluoride (SDF) products on dentinal tubule (DT) occlusion and dentin permeability.
Methods: Sixty-six dentin discs (1.0 mm thick) were divided equally into six groups: acid-etched with no treatment (negative control-NC), etched and sealed with nail varnish (positive control-PC), non-etched and treated with Advantage Arrest (AA), non-etched and treated with Topamine (TP), etched and treated with AA, and etched and treated with TP.
Purpose: The purpose of this study was to investigate the correlation between the size and concentration of titanium particles and the osteogenic response of human osteoblasts (HOB).
Materials And Methods: Different concentrations of titanium dioxide nano- and micro-particles were prepared and their biocompatibility on HOBs was analyzed using XTT assay. The changes in the actin cytoskeletal organization were studied by confocal laser scanning microscopy.
Purpose: This study investigated the size and amount of titanium particles immediately released following dental implant insertion into bovine bone blocks and aimed to correlate them with the surface roughness of the implants.
Methods: Twelve bone blocks were prepared from bovine mandibles. Six tapered (group A) and 6 cylindrical (group B) dental implants were inserted into the bone blocks under water irrigation, following the standard drilling protocol.
This study aimed to investigate the immunomodulatory effect of two different forms of phosphate-based glass microspheres (solid and porous), on human macrophages. Human THP-1 monocytes were converted to M0 macrophages after being treated with 100 ng/mL phorbol 12-myristate 13-acetate for 48 h. The differentiated cells were analysed for the CD14 marker using flow cytometry.
View Article and Find Full Text PDFTitanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles.
View Article and Find Full Text PDFThis study aimed to develop polycaprolactone (PCL) electrospun membranes coated with mineral trioxide aggregate/hydroxyapatite (MTA/HA) as a potential material for dental pulp capping. Initially, the PCL membrane was prepared by an electrospinning process, which was further surface coated with MTA (labeled as PCLMTA) and HA (labeled as PCLHA). The physico-chemical characterization of the fabricated membranes was carried out using field emission scanning electron microscopy (FE-SEM)/Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and contact angle analysis.
View Article and Find Full Text PDFObjective: The interest in bioceramic materials has been steadily growing for different applications in endodontics. With the continued introduction of new bioceramic-based materials into the market, it is of great importance to assess the biocompatibility before providing recommendations on their clinical use. This study evaluated the cytotoxicity and mineralization potential of two consistencies of unset premixed bioceramic material (TotalFill BC RRM putty and TotalFill BC sealer) compared with an epoxy resin-based sealer (AH Plus) on osteoblast cells.
View Article and Find Full Text PDFAims: Lipopolysaccharides (LPS)-activated human dental pulp stem cells (hDPSCs) and macrophage co-cultures showed downregulated TNF-α secretion that is modulated by hDPSCs through IDO axis, whereas the secretory levels of IL-1β remained unchanged. Therefore, sustained production of IL-1β could contribute to progressive dental pulp inflammation. However, the role of interleukin-1 receptor antagonist (IL-1RA) in downregulating the secretion of IL-1β and TNF-α in LPS-activated M0/M1/M2 macrophage and hDPSCs co-culture has not been studied yet.
View Article and Find Full Text PDFObjectives: To evaluate the fatigue and fracture resistance of ultra-thin laminate veneers (UTLV) with two different thicknesses and two different bonding protocols.
Materials And Methods: A total of 64 flat enamel surfaces were assigned to either 0.2 or 0.
Objectives: This study aimed to evaluate the effect of in-office bleaching on the enamel surface and the efficacy of calcium silicate-sodium phosphate-fluoride salt (CS) and NovaMin bioactive glass (NM) dentifrice in remineralizing bleached enamel.
Materials And Methods: Forty extracted premolars were sectioned mesio-distally, and the facial and lingual enamel were flattened and polished. The samples were equally divided into nonbleached and bleached with 38% hydrogen peroxide (HP).
The objective of this study was to develop electrospun polycaprolactone (PCL) membranes blended with hydroxyapatite (HA) and evaluate its potential in differentiating inflamed dental pulp stem/progenitor cells (IDPSCs) into odontoblasts. Electrospun nanofibrous membrane consisting of PCL blended with 10 wt% and 15 wt% of HA were fabricated and the characterization was done by Scanning electron microscopy (SEM), Fourier- transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and contact angle analysis. Cytocompatibility, cell adhesion and odontogenic differentiation ability of the membranes were assessed by MTT, Live/Dead, SEM/DAPI and qPCR studies.
View Article and Find Full Text PDFPurpose: To evaluate the effect of Er:YAG laser on the roughness, surface topography, and bond strength to resin luting cement based on chemical and micro-abrasion pretreatments of different computer-aided design/computer-aided manufacturing materials.
Methods: A polymer-infiltrated-ceramic-network (PICN) material (Vita Enamic, VE), three indirect resin composite (Cerasmart, CS; Shofu HC, SH; Lava Ultimate, LU), and one lithium disilicate ceramic (IPS e.max CAD, EM) blocks were subjected to one of the following pretreatments: no treatment (NC ), Er:YAG etching with one of two powers (either 3 or 6 W), hydrofluoric acid (HF) etching, self-etching ceramic primer (ME), or micro-abrasion (MA).