Publications by authors named "Soumya Palliyil"

Background: Recent advances in blood-based biomarker discovery are paving the way for simpler, more accessible diagnostic tools that can detect early signs of Alzheimer's disease (AD). Recent successes in the development of amyloid-targeting immunotherapy approaches mark an important advancement in providing new options for the treatment of AD. We have developed a set of high-affinity monoclonal antibodies (mAbs) to tau protein that have the potential as tools for diagnosis and treatment of AD.

View Article and Find Full Text PDF

Glutamatergic neurotransmission, important for learning and memory, is disrupted in different ways in patients with Alzheimer's disease (AD) and frontotemporal dementia (FTD) tauopathies. We have previously reported that two tau transgenic mouse models, L1 and L66, produce different phenotypes resembling AD and FTD, respectively. The AD-like L1 model expresses the truncated core aggregation domain of the AD paired helical filament (PHF) form of tau (tau296-390) whereas the FTD-like L66 model expresses full-length tau carrying two mutations at P301S/G335D.

View Article and Find Full Text PDF

The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD.

View Article and Find Full Text PDF

Objectives: With the development of new technologies capable of detecting low concentrations of Alzheimer's disease (AD) relevant biomarkers, the idea of a blood-based diagnosis of AD is nearing reality. This study aims to consider the evidence of total and phosphorylated tau as blood-based biomarkers for mild cognitive impairment (MCI) and AD when compared to healthy controls.

Methods: Studies published between 1 January 2012 and 1 May 2021 (Embase and MEDLINE databases) measuring plasma/serum levels of tau in AD, MCI, and control cohorts were screened for eligibility, including quality and bias assessment via a modified QUADAS.

View Article and Find Full Text PDF

Monoclonal antibody (mAb)-based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development, with no licensed antifungal mAbs currently being available for patients at risk. The cell wall glycoproteins of Candida albicans are of particular interest as potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. Here, we describe the generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C.

View Article and Find Full Text PDF

ORF3a has been identified as a viroporin of SARS-CoV-2 and is known to be involved in various pathophysiological activities including disturbance of cellular calcium homeostasis, inflammasome activation, apoptosis induction and disruption of autophagy. ORF3a-targeting antibodies may specifically and favorably modulate these viroporin-dependent pathological activities. However, suitable viroporin-targeting antibodies are difficult to generate because of the well-recognized technical challenge associated with isolating antibodies to complex transmembrane proteins.

View Article and Find Full Text PDF
Article Synopsis
  • * The only approved treatment as of now is Saroglitazar in India, yet several candidates like Obeticholic acid and Semaglutide are in advanced clinical trials, indicating potential future options.
  • * Given NASH's complex nature, effective treatment may require a combination of therapies targeting different disease stages rather than a single drug solution.
View Article and Find Full Text PDF

Despite continued efforts, there remain no disease-modifying drugs approved by the United States Food and Drug Administration (FDA) or European Medicines Agency (EMA) to combat the global epidemic of Alzheimer's disease. Currently approved medicines are unable to delay disease progression and are limited to symptomatic treatment. It is well established that the pathophysiology of this disease remains clinically silent for decades prior to symptomatic clinical decline.

View Article and Find Full Text PDF

A number of bacteria use a class of chemical compounds called acyl-homoserine lactones (AHLs) as quorum sensing (QS) signals to coordinate their behavior at the population level, including pathogens like Pseudomonas aeruginosa. Blocking QS using antibodies is an attractive strategy for infection control as this process takes a central role in P. aeruginosa infections.

View Article and Find Full Text PDF

Morbidity and mortality associated with infectious diseases are always on the rise, especially in poorer countries and in the aging population. The inevitable, but unpredictable emergence of new infectious diseases has become a global threat. HIV/AIDS, severe acute respiratory syndrome (SARS), and the more recent H1N1 influenza are only a few of the numerous examples of emerging infectious diseases in the modern era.

View Article and Find Full Text PDF

Background: Low molecular weight haptens (<1000 Da) cannot be recognized by the immune system unless conjugated to larger carrier molecules. Antibodies to these exceptionally small antigens can still be generated with exquisite sensitivity. A detailed understanding at the molecular level of this incredible ability of antibodies to recognize haptens, is still limited compared to other antigen classes.

View Article and Find Full Text PDF

A number of bacteria, including pathogens like Pseudomonas aeruginosa, utilize homoserine lactones (HSLs) as quorum sensing (QS) signaling compounds and engage in cell-to-cell communication to coordinate their behavior. Blocking this bacterial communication may be an attractive strategy for infection control as QS takes a central role in P. aeruginosa biology.

View Article and Find Full Text PDF

The rise in infections caused by Gram-negative bacteria and the spread of resistance to conventional antibiotics provide significant challenges to the pharmaceutical industry. Monoclonal antibodies have achieved impressive recent clinical successes in a variety of indications, but to date there are no licensed immunotherapeutics that target bacterial infections, despite several promising studies in animal models of infection. Several key questions remain, in particular relating to the target(s), mechanism of action, and mode of delivery of any potential novel immunotherapeutic.

View Article and Find Full Text PDF