Purpose: A single-nucleotide polymorphism in HTRA1 has been linked to age-related macular degeneration (AMD). Here we investigated the potential links between age-related retinal changes, elastin turnover, elastin autoantibody production, and complement C3 deposition in a mouse model with RPE-specific human HTRA1 overexpression.
Methods: HTRA1 transgenic mice and age-matched CD1 wild-type mice were analyzed at 6 weeks and 4, 6, and 12 to 14 months of age using in vivo retinal imaging by optical coherence tomography (OCT) and fundus photography, as well as molecular readouts, focusing on elastin and elastin-derived peptide quantification, antielastin autoantibody, and total Ig antibody measurements and immunohistochemistry to examine elastin, IgG, and C3 protein levels in retinal sections.
Invest Ophthalmol Vis Sci
February 2024
Müller glia, the main glial cell of the retina, are critical for neuronal and vascular homeostasis in the retina. During age-related macular degeneration (AMD) pathogenesis, Müller glial activation, remodeling, and migrations are reported in the areas of retinal pigment epithelial (RPE) degeneration, photoreceptor loss, and choroidal neovascularization (CNV) lesions. Despite this evidence indicating glial activation localized to the regions of AMD pathogenesis, it is unclear whether these glial responses contribute to AMD pathology or occur merely as a bystander effect.
View Article and Find Full Text PDFAbnormal turnover of the extracellular matrix (ECM) protein elastin has been linked to AMD pathology. Elastin is a critical component of Bruch's membrane (BrM), an ECM layer that separates the retinal pigment epithelium (RPE) from the underlying choriocapillaris. Reduced integrity of BrM's elastin layer corresponds to areas of choroidal neovascularization (CNV) in wet AMD.
View Article and Find Full Text PDFThe extracellular matrix (ECM) and its turnover play a crucial role in the pathogenesis of several inflammatory diseases, including age-related macular degeneration (AMD). Elastin, a critical protein component of the ECM, not only provides structural and mechanical support to tissues, but also mediates several intracellular and extracellular molecular signaling pathways. Abnormal turnover of elastin has pathological implications.
View Article and Find Full Text PDFHyperhomocysteinemia (Hhcy), or increased levels of the excitatory amino acid homocysteine (Hcy), is implicated in glaucoma, a disease characterized by increased oxidative stress and loss of retinal ganglion cells (RGCs). Whether Hhcy is causative or merely a biomarker for RGC loss in glaucoma is unknown. Here we analyzed the role of NRF2, a master regulator of the antioxidant response, in Hhcy-induced RGC death in vivo and in vitro.
View Article and Find Full Text PDFThis study evaluated the effects of elevated homocysteine (Hcy) on the oxidative stress response in retinal Müller glial cells. Elevated Hcy has been implicated in retinal diseases including glaucoma and optic neuropathy, which are characterized by retinal ganglion cell (RGC) loss. To understand the mechanisms of Hcy-induced RGC loss, in vitro and in vivo models have been utilized.
View Article and Find Full Text PDFPurpose: Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also.
View Article and Find Full Text PDF