Publications by authors named "Soumya Kanti De"

The aggregation and subsequent precipitation of gold nanoparticles (Au NPs) in the presence of protein molecules restrict the usefulness of NPs in biomedical applications. Till now, the influence of different properties of Au NPs (size, surface charge, surface coatings) and proteins (surface charge, chemical modification, folded and unfolded states) and pH and ionic strength of the solution on the aggregation of both Au NPs and proteins has been thoroughly discussed in the literature. However, the underlying different mechanistic pathways of the protein concentration-dependent aggregation of both Au NPs and proteins are poorly understood.

View Article and Find Full Text PDF

The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn, Cd, and Hg) and trivalent (Al, Ga, and In) metal ions having low p values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states.

View Article and Find Full Text PDF

In recent years, the underlying mechanism of formation of the lipid corona and its stability have begun to garner interest in the nanoscience community. However, until now, very little is known about the role of different properties of nanoparticles (NPs) (surface charge density, hydrophobicity, and size) in lipid corona formation. Apart from the physicochemical properties of NPs, the different properties of lipids remain elusive in lipid corona formation.

View Article and Find Full Text PDF

Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium.

View Article and Find Full Text PDF

Indocyanine green (ICG) is a clinically approved near-infrared (NIR) contrast agent used in medical diagnosis. However, ICG has not been used to its fullest for biomedical imaging applications due to its low fluorescence quantum yield, aqueous instability, concentration-dependent aggregation, and photo and thermal degradations, leading to quenching of its fluorescence emission. In the present study, a nanosized niosomal formulation, ICGNiosomes (ICGNios), is fabricated to encapsulate and protect ICG from degradation.

View Article and Find Full Text PDF

We observe a unique distinct emission behaviour of hydrophobic carbon dots (H-CDs) embedded within the ordered and the disordered phase of a lipid membrane. The H-CDs exhibit blue emission in the disordered phase, however, they exhibit an intense red emission in the ordered phase of the lipid bilayer. The H-CDs have the potential ability to probe membrane dynamics like previously reported organic dyes.

View Article and Find Full Text PDF

The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past.

View Article and Find Full Text PDF

The coating of proteins and lipids around the surface of the nanoparticles is known as "protein corona" and "lipid corona", respectively, which have promising biomedical applications. While protein corona formation is well-known, the lipid corona is relatively new and its stability is yet to be explored. In the present contribution, we report a novel lipid corona formation and its underlying mechanism using aromatic amino acid-functionalized gold nanoparticles (Au-AA NPs) as a template by means of spectroscopic (steady-state UV-visible and fluorescence) and imaging (CLSM, HR-TEM, and AFM) techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different charged lipid bilayer membranes interact with various amino acids using advanced spectroscopic techniques and confocal imaging.
  • Negatively charged amino acids like aspartic and glutamic acids strongly stabilize negatively charged lipid membranes, while positively charged amino acids contribute to increased hydration within those membranes.
  • The findings highlight the critical roles of pK shifts, solvation processes, and hydrogen bonding in these interactions, revealing that more polar amino acids like serine interact more effectively with lipid membranes compared to hydrophobic ones like leucine and valine.
View Article and Find Full Text PDF

The spontaneous formation of amyloid structures of proteins is responsible for several major human neurodegenerative diseases. Here, we demonstrate that the formation of amyloid aggregates of the amino acids results in the formation of supported phospholipid membrane and aggregated vesicles via fusion and self-reproduction of the lipid vesicles. Importantly, during the vesicle growth, we found the formation of large "mother vesicles" containing small "daughter vesicles".

View Article and Find Full Text PDF

In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al, Ga, and In, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region.

View Article and Find Full Text PDF

We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e.

View Article and Find Full Text PDF

In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy. We used three zwitterionic lipids that are widely different in their phase transition temperature, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and salts of zinc (Zn), calcium (Ca) and magnesium (Mg). The steady state and time resolved studies reveal that the affinity of the metal ions follows the order Zn2+ > Ca2+ > Mg2+.

View Article and Find Full Text PDF

In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation.

View Article and Find Full Text PDF