Publications by authors named "Soumya Jyoti Basak"

We present the first total synthesis of (±) benzomalvin E, featuring a quinazolino moiety with a 6-6-6-7-fused tetracyclic skeleton containing three nitrogen atoms. The key transformation involves Cu-catalyzed intramolecular C-N arylation of quinazolinone, leading to a sclerotigenin analogue that undergoes nucleophilic addition with benzaldehyde, enabling the synthesis of (±) benzomalvin E in six linear steps with a 33% overall yield. The (±) benzomalvin E's structure was validated by 2-D NMR and single crystal XRD analysis and was further transformed into ()-benzomalvin B.

View Article and Find Full Text PDF

In this study, we present a novel and cost-effective approach for synthesizing biologically significant analogues of rutaecarpine alkaloid through a one-step cascade reaction. The pentacyclic core of rutaecarpine alkaloid analogues is efficiently constructed using 2-aminobenzonitriles and substituted indole-2-carbaldehydes in the presence of the affordable base KOBu. The salient feature of this approach is the promotion of a sequential cascade process within a single reaction vessel including the formation of a dihydroquinazolinone ring, oxidation, and cyclization.

View Article and Find Full Text PDF

We herein describe a diastereoselective aldol exchange involving isatins and thiazolidinediones, providing oxindolyl-thiazolidienediones in aqueous media at pH 6. This equilibrium can also be achieved with oxindole exchange as well as cross-exchange within reasonable timescales. These metal and organic catalyst free reversible reactions provide a unique opportunity for the evolution of dynamic combinatorial libraries (DCLs) for target directed dynamic combinatorial chemistry (DCC) and system chemistry.

View Article and Find Full Text PDF

We herein report an efficient synthetic protocol to access heterocyclic dihydroquinazolinones by a transition-metal-free process, involving the reaction of 2-aminobenzonitriles with aldehydes in the presence of KOBu. The method is compatible with aromatic ketones providing 2,2-disubstituted dihydroquinazolinones in high yields. This reaction proceeds feasibly at room temperature and features a broad substrate scope and tolerance to a range of functional groups.

View Article and Find Full Text PDF