Publications by authors named "Soumya Ganguly"

We study order-disorder transitions in three-dimensional multicolored loop models using Monte Carlo simulations. We show that the nature of the transition is intimately related to the nature of the loops. The symmetric loops undergo a first-order phase transition, while the nonsymmetric loops show a second-order transition.

View Article and Find Full Text PDF

We conduct Monte Carlo simulations to analyze the percolation transition of a nonsymmetric loop model on a regular three-dimensional lattice. We calculate the critical exponents for the percolation transition of this model. The percolation transition occurs at a temperature that is close to, but not exactly, the thermal critical temperature.

View Article and Find Full Text PDF

Garcinia indica, known as kokum, has been extensively researched for its therapeutic potential. Among the wide variety of phytoconstituents, garcinol is the most efficacious, holding anti-inflammatory, anti-cancer, and anti-diabetic properties. Hydrophobicity and a certain level of toxicity have constrained the drug's application and necessitated a modified dosage form design.

View Article and Find Full Text PDF

A single experimental method alone often fails to provide the resolution, accuracy, and coverage needed to model integral membrane proteins (IMPs). Integrating computation with experimental data is a powerful approach to supplement missing structural information with atomic detail. We combine RosettaNMR with experimentally-derived paramagnetic NMR restraints to guide membrane protein structure prediction.

View Article and Find Full Text PDF

Fragment-based drug discovery begins with the identification of small molecules with a molecular weight of usually less than 250 Da which weakly bind to the protein of interest. This technique is challenging for computational docking methods as binding is determined by only a few specific interactions. Inaccuracies in the energy function or slight deviations in the docking pose can lead to the prediction of incorrect binding or difficulties in ranking fragments in screening.

View Article and Find Full Text PDF

BRICS economies are important in recent times because the economic growth rates will be higher than the growth rates of G-6 economies in the near future. But the year 2020 has smashed up this tendency due to volatile stock markets of BRICS economies. A detailed examination of the BRICS stock market to determine volatility and relationships since the crisis of 2020 is hardly available in the available research.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common hepatic malignancy worldwide. Recent reports focusing on the efficacy of apigenin-loaded nanoparticles (NPs) in combating the progress of HCC encouraged us to develop galactose-tailored PLGA NPs loaded with apigenin (API-GAL-NPs) for active liver targeting to treat HCC. Two kinds of apigenin NPs, such as apigenin-PLGA NPs (API-NPs) and API-GAL-NPs were fabricated and characterized by size, surface morphology, encapsulation efficacy, and in vitro drug release kinetics.

View Article and Find Full Text PDF

The flavone apigenin (APG), alone as well as in combination with other chemotherapeutic agents, is known to exhibit potential anticancer effects in various tumors and inhibit growth and metastasis of melanoma. However, the potential of apigenin nanoparticles (APG-NPs) to prevent lung colonization of malignant melanoma has not been well investigated. APG-loaded PLGA-NPs were surface-functionalized with -2,3-dimercaptosuccinic acid (DMSA) for the treatment of melanoma lung metastasis.

View Article and Find Full Text PDF

Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea exhibits significant anti-cancer potential over a wide range of cancer cells. We have developed folate peptide decorated PLGA-NPs loaded with EGCG (FP-EGCG-NPs) to bind folate receptor (FR) specific breast cancer cell lines and evaluated their efficacy in pre-clinical studies. EGCG loaded PLGA nanoparticles (EGCG-NPs) were characterised for size, surface morphology, surface charge, encapsulation efficacy and in-vitro drug release kinetics.

View Article and Find Full Text PDF

The cytotoxic drug gemcitabine (GEM) has been conjugated to receptor-binding peptides to target melanoma tumors. A hexapeptide having a Lys-Gly-His-Lys sequence (pep-1), an octapeptide with an Arg-Gly-Asp-Lys-Gly-His-Lys sequence (pep-2), a GEM-conjugated Lys-Gly-His-Lys peptide (GEM-pep-3) and a GEM-conjugated Asp-Gly-Arg peptide (GEM-pep-4) were synthesized and characterized. uptake of fluorescently labeled GEM-pep-3 and GEM-pep-4 on B16F10 cells was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • NsaS is an intramembrane histidine kinase in Staphylococcus aureus, playing a crucial role in the bacteria's defense against antimicrobials and human immune responses.* -
  • The study utilizes advanced techniques like NMR spectroscopy and molecular modeling to uncover three main structural features of NsaS: an N-terminal helix that helps anchor it in the membrane, a dynamic transmembrane domain, and a flexible linker to its catalytic domains.* -
  • The intracellular linker is particularly interesting, showing variability in its structure that might change during antibiotic signaling, indicating how NsaS adapts during interactions with antibiotics.*
View Article and Find Full Text PDF

Garcinol (GAR) is a naturally occurring polyisoprenylated phenolic compound. It has been recently investigated for its biological activities such as antioxidant, anti-inflammatory, anti ulcer, and antiproliferative effect on a wide range of human cancer cell lines. Though the outcomes are very promising, its extreme insolubility in water remains the main obstacle for its clinical application.

View Article and Find Full Text PDF

Transcription factors (TFs) play multiple roles in development. Given this multifunctionality, it has been assumed that TFs are evolutionarily highly constrained. Here, we investigate the molecular mechanisms for the origin of a derived functional interaction between two TFs, HOXA11 and FOXO1.

View Article and Find Full Text PDF

In recent years the authors have reported on (99m)Tc(CO)3-labeled peptides that serve as carriers for biomolecules or radiopharmaceuticals to the tumors. In continuation of that work they report the synthesis of a pentapeptide (Met-Phe-Phe-Gly-His; pep-1), a hexapeptide (Met-Phe-Phe-Asp-Gly-His; pep-2), and a tetrapeptide (Asp-Gly-Arg-His; pep-3) and the attachment of 3-amino-1,2,4-triazole to the β carboxylic function of the aspartic acid unit of pep-2 and pep-3. The pharmacophores were radiolabeled in high yields with [(99m)Tc(CO)3(H2O)3](+) metal aqua ion, characterized for their stability in serum and saline, as well as in His solution, and found to be substantially stable.

View Article and Find Full Text PDF

The combination of paramagnetic tagging strategies with NMR or EPR spectroscopic techniques can revolutionize de novo structure determination of helical membrane proteins. Leveraging the full potential of this approach requires optimal labeling strategies and prediction of membrane protein topology from sparse and low-resolution distance restraints, as addressed by Chen et al. (2011).

View Article and Find Full Text PDF

For the development of a scheme for quantitative experimental estimation of internal motion in the complex human milk hexasaccharide lacto-N-di-fuco hexose I (LNDFH I), we measured a large number of experimental residual dipolar couplings in liquid crystal orienting media. We present a total of 40 (13)C--(1)H and (1)H--(1)H dipolar coupling values, each representing distinct directions of internuclear vectors. The NMR data were interpreted with established methods for analysis of rigid subdomains of the oligosaccharide as well as a novel method in which dipolar couplings were calculated over an ensemble of conformers from a solvent Molecular Dynamics trajectory using multiple linear regression analysis.

View Article and Find Full Text PDF

The presence of L-rhamnose (Rha) branches in the coaggregation receptor polysaccharides (RPS) of Streptococcus gordonii 38 and Streptococcus oralis J22 was eliminated by replacement of wefB with ermAM in these strains. The expression of this gene in S. oralis 34 did not, however, result in the addition of Rha branches to the linear RPS of this strain, which is identical to that produced by the wefB-deficient mutant of S.

View Article and Find Full Text PDF

The structure of a new O-polysaccharide from Escherichia coli O86:K62:B7 was determined using NMR and methylation analysis. The structure is as follows: [carbohydrate: see text]. Comparison with the previously published structure from E.

View Article and Find Full Text PDF

The cell wall polysaccharides of certain oral streptococci function as receptors for the lectin-like surface adhesins on other members of the oral biofilm community. Recognition of these receptor polysaccharides (RPS) depends on the presence of a host-like motif, either GalNAcbeta1-3Gal (Gn) or Galbeta1-3GalNAc (G), within the oligosaccharide repeating units of different RPS structural types. Type 2Gn RPS of Streptococcus gordonii 38 and type 2G RPS of Streptococcus oralis J22 are composed of heptasaccharide repeats that are identical except for their host-like motifs.

View Article and Find Full Text PDF