Biofilm formation is a widespread phenomenon that impacts different fields, including the food industry, agriculture, health care and the environment. Accordingly, there is a serious need for new methods of managing the problem of biofilm formation. Natural products have historically been a rich source of varied compounds with a wide variety of biological functions, including antibiofilm agents.
View Article and Find Full Text PDFIn the heritage field, the microbial adhesion on wood, and consequently the formation of biofilm led to inestimable losses of historical and cultural monuments. Thereby, this study aimed to examine the combined effect of and essential oils on wood surface physico-chemical properties, and to elaborate the optimal mixture using the mixture design approach coupled to the contact angle method. It was found that both wood hydrophobicity and electron donor character increased significantly after treatment using an optimal mixture containing 57% and 43% of and essential oils, respectively.
View Article and Find Full Text PDFDespite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor ( ), and electron-donor ( ) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils.
View Article and Find Full Text PDFA Wickeramomyces anomalus biofilm supported on wood husk was used to remediate water bodies contaminated with chromium (Cr), in batch and open systems. The favorable adhesion ability of the chromium-resistant yeast strain on the wood husk was predicted by XDLVO theory and confirmed by environmental scanning electronic microscopy. The chromium decontamination was then optimized in a batch mode using a central composite design (CCD).
View Article and Find Full Text PDFLayered double hydroxide (LDH) has attracted major interest as one of the most versatile drug delivery systems especially for adsorption capacity and/or controlled delivery property of bioactive agents owing to their combining features of biohybrid. ZnAl synthesized layered double hydroxide can offer a platform to immobilize various types of bioactive compounds, particularly berberine chloride (BBC). However, the immobilization reaction of berberine chloride into ZnAl-LDH was performed by direct co-precipitation method at different ratios of BBC/LDH.
View Article and Find Full Text PDFHydrotalcite (HT), also known as a layered double hydroxide (LDH) compound, has been widely used in past years in the formulation of drugs due to its specific properties including good biocompatibility, null toxicity, high chemical stability and pH-dependent solubility which aid in drug controlled release. In this work, berberine chloride (BBC) class antibacterial agent was immobilized into magnesium-aluminum LDH in order to improve the drug efficiency as well as to achieve the controlled release property. BBC molecules were immobilized into MgAl LDH through a conventional ion exchange reaction and co-precipitation method.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
April 2013
In this study, the adhesion of 4 Penicillium strains (Penicillium granulatum, Penicillium crustosum, Penicillium commune and Penicillium chrysogenum) on cedar wood was examined qualitatively and quantitatively by using the extended DLVO (XDLVO) approach and the environmental scanning electronic microscopy (ESEM) technique. A comparison between the XDLVO theories and the ESEM technique was also investigated. The adhesion tests revealed that P.
View Article and Find Full Text PDF