Most cancer vaccines target peptide antigens, necessitating personalization owing to the vast inter-individual diversity in major histocompatibility complex (MHC) molecules that present peptides to T cells. Furthermore, tumours frequently escape T cell-mediated immunity through mechanisms that interfere with peptide presentation. Here we report a cancer vaccine that induces a coordinated attack by diverse T cell and natural killer (NK) cell populations.
View Article and Find Full Text PDFTumor-infiltrating myeloid-derived suppressor cells (MDSC) are associated with poor survival outcomes in many human cancers. MDSCs inhibit T cell-mediated tumor immunity in part because they strongly inhibit T-cell function. However, whether MDSCs inhibit early or later steps of T-cell activation is not well established.
View Article and Find Full Text PDFMICA and MICB are expressed by many human cancers as a result of cellular stress, and can tag cells for elimination by cytotoxic lymphocytes through natural killer group 2D (NKG2D) receptor activation. However, tumors evade this immune recognition pathway through proteolytic shedding of MICA and MICB proteins. We rationally designed antibodies targeting the MICA α3 domain, the site of proteolytic shedding, and found that these antibodies prevented loss of cell surface MICA and MICB by human cancer cells.
View Article and Find Full Text PDFExisting strategies to enhance peptide immunogenicity for cancer vaccination generally require direct peptide alteration, which, beyond practical issues, may impact peptide presentation and result in vaccine variability. Here, we report a simple adsorption approach using polyethyleneimine (PEI) in a mesoporous silica microrod (MSR) vaccine to enhance antigen immunogenicity. The MSR-PEI vaccine significantly enhanced host dendritic cell activation and T-cell response over the existing MSR vaccine and bolus vaccine formulations.
View Article and Find Full Text PDFWhile many HLA class I molecules interact directly with the peptide loading complex (PLC) for conventional loading of peptides certain class I molecules are able to present peptides in a way that circumvents the PLC components. We investigated micropolymorphisms at position 156 of HLA-A(*)24 allotypes and their effects on PLC dependence for assembly and peptide binding specificities. HLA-A(*)24:06(156Trp) and HLA-A(*)24:13(156Leu) showed high levels of cell surface expression while HLA-A(*)24:02(156Gln) was expressed at low levels in tapasin deficient cells.
View Article and Find Full Text PDFMucopolysaccharide diseases (MPS) are caused by deficiency of glycosaminoglycan (GAG) degrading enzymes, leading to GAG accumulation. Neurodegenerative MPS diseases exhibit cognitive decline, behavioural problems and shortened lifespan. We have characterised neuropathological changes in mouse models of MPSI, IIIA and IIIB to provide a better understanding of these events.
View Article and Find Full Text PDFPosition 45 represents a highly polymorphic residue within HLA class I alleles, which contacts the p2 position of bound peptides in 85% of the peptide-HLA structures analyzed, while the neighboring residues 41 and 46 are not involved in peptide binding. To investigate the influence of residue 45 at the functional level, we sequenced peptides eluted from recombinant HLA-B*44:08(41Ala/45Met/46Ala) molecules and compared their features with known peptides from B*44:02(41Thr/45Lys/46Glu). While HLA-B*44:02 has an anchor motif of E at the p2 anchor position, HLA-B*44:08 exhibits Q and L as anchor motif.
View Article and Find Full Text PDFBackground: Polymorphic differences between donor and recipient human leukocyte antigen class I molecules can result in graft-versus-host disease due to distinct peptide presentation. As part of the peptide-loading complex, tapasin plays an important role in selecting peptides from the pool of potential ligands. Class I polymorphisms can significantly alter the tapasin-mediated interaction with the peptide-loading complex and although most class I allotypes are highly dependent upon tapasin, some are able to load peptides independently of tapasin.
View Article and Find Full Text PDFSequence variations outside exons 2 and 3 do not appear to affect the function of human leukocyte antigen (HLA) class I alleles. HLA-B*44:02:01:01 and -B*44:27 are considered functionally identical because they differ by a single amino acid substitution of Val > Ala at position 199, which is located in the α3 domain. To validate that HLA-B*44:02:01:01 and -B*44:27 represent functionally identical alleles that might reflect a permissive mismatch in hematopoetic stem cell transplantation (HSCT), we determined their peptide-binding features.
View Article and Find Full Text PDF