Publications by authors named "Soumitra Mitra"

In the zebrafish retina, Müller glia (MG) can regenerate retinal neurons lost to injury or disease. Even though zebrafish MG share structure and function with those of mammals, only in zebrafish do MG function as retinal stem cells. Previous studies suggest dying neurons, microglia/macrophage, and T cells contribute to MG's regenerative response [White et al.

View Article and Find Full Text PDF

Tgf-β signaling is a major antiproliferative pathway governing different biological functions, including cellular reprogramming. Upon injury, Müller glial cells of zebrafish retina reprogram to form progenitors (MGPCs) essential for regeneration. Here, the significance of Tgf-β signaling for inducing MGPCs is explored.

View Article and Find Full Text PDF

Octamer-binding transcription factor 4 (Oct4, also known as Pou5F3) is an essential pluripotency-inducing factor, governing a plethora of biological functions during cellular reprogramming. Retina regeneration in zebrafish involves reprogramming of Müller glia (MG) into a proliferating population of progenitors (MGPCs) with stem cell-like characteristics, along with up-regulation of pluripotency-inducing factors. However, the significance of Oct4 during retina regeneration remains elusive.

View Article and Find Full Text PDF

Cellular reprogramming leading to induction of Muller glia-derived progenitor cells (MGPCs) with stem cell characteristics is essential for zebrafish retina regeneration. Although several regeneration-specific genes are characterized, the significance of MGPC-associated Mycb induction remains unknown. Here, we show that early expression of Mycb induces expression of genes like , a known activator of in MGPCs.

View Article and Find Full Text PDF

Histone deacetylases (Hdacs) play significant roles in cellular homeostasis and tissue differentiation. Hdacs are well characterized in various systems for their physiological and epigenetic relevance. However, their significance during retina regeneration remains unclear.

View Article and Find Full Text PDF

Upon injury, Müller glia cells of the zebrafish retina reprogram themselves to progenitor cells with stem cell characteristics. This necessity for retina regeneration is often compromised in mammals. We explored the significance of developmentally inevitable Sonic hedgehog signaling and found its necessity in MG reprogramming during retina regeneration.

View Article and Find Full Text PDF